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Abstract 

The paper presents a novel approach for the detection of ship collision risks, by classifying images of ship traffic 

constructed from AIS data, using deep learning techniques.  In this approach, the risk level of ship traffic patterns, 

according to maritime safety rules, is calculated, using a convolutional neural network trained on ship traffic image data.  

Experiments with the analysis of real ship traffic data from the English Channel are reported. 
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1. Problem statement 

The capabilities of unmanned maritime vessels are rapidly 

improving, although the regulation and international laws that 

govern their operations are still in progress, Similar to land based 

autonomous vehicles, the autonomous path (route) planning of 

sea vessels is a fundamental capability. In contrast to ground and 

air autonomous path planning, however, route path planning 

present numerous challenges such as safety, complexity and 

environmental dynamics that hinder the development of reliable 

autonomous vessels [1]. Route planning algorithms for ships 

must comply with rules for safe distance, safe speed, angle of 

approach and many others. Ship collisions are rare events that 

may however, have a significant impact on the safety of people, 

ships, and other marine structures, as well as on the environment 

[2].  

COLREGs is a set of safety regulations by the International 

Maritime Organisation (IMO) that describe potential collision 

scenarios for ships, such as crossing, head-on and overtaking, 

and suggests possible manoeuvres to avoid a collision. The 38 

internationally agreed COLREG rules are compiled by the 

International Convention for Safety of Life at Sea and are known 

officially as the International Regulations for Preventing 

Collisions at Sea collision.  However, although the rules provide 

a set of guidelines for safe manoeuvring at sea, they are aimed 

at human navigators, not unmanned systems. [3] Additionally, 

the subjective nature of COLREGs is one of the major causes of 

ship collisions. Indeed, it is estimated that human error 

contributes to between 89% and 96% of marine collisions 

(Rothblum, 2000 in [3]). 

As ship technology is moving towards partial or full 

automation (i.e., autonomous ships), it is important for a ship’s 

supervisory/guidance system to be able to detect unsafe sail 

situations, caused in particular, by the proximity and movement 

of other marine traffic. In this paper we propose that, with the 

use of machine learning techniques such as neural networks for 

machine vision, it is possible for the route planning system of 

the autonomous vessel to analyse images of maritime traffic and 

to detect potentially dangerous patterns, by classifying the ship 

traffic images according to their risk, following collision risk 

rules. Then, based on such information, the route planning 

system can plan a route that avoids the creation of collision risk 

situations, and in general, calculates a safe sailing route. 

The paper is organised as follows. The next section describes 

the methodology we followed to obtain ship traffic data, and the 

data processing stages followed in order to use the data as inputs 

in a Convolutional Neural Network (CNN) for ship traffic 

pattern classification. Section 3 discusses the results we 

obtained, and their analysis in terms of metrics such as precision, 

recall, etc. Finally, Section 4 discusses strengths and limitations 

of our approach and plans for future research. 
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2. Methods and Models 

   2.1 Computer vision in autonomous systems 

In recent years, deep machine learning-based visual 

perception has been widely applied to autonomous ship 

navigation and maritime transportation surveillance [4].  Visual 

perception includes the tasks of image identification, image 

classification, object detection, scene understanding, and 

specific object recognition [5]. Machine learning techniques 

have become popular in the past decades for computer vision 

applications in transportation, with deep learning neural network 

approaches gaining prominence more recently [6]. Deep 

learning has been applied in the maritime industry for ship 

classification, object detection, collision avoidance, risk 

perception, and anomaly detection. Amongst the deep learning 

neural network architectures, convolutional neural network 

(CNN) is one type of deep learning, used for learning 

classification and feature extraction from training samples [5]. 

For instance, CNN-based YOLOv3 object recognition and 

image classification, are amongst the core technologies of 

autonomous driving technology [7]. 

However, machine learning vision applications require an 

array of sensors, cameras, radars (Lidars) as well as powerful 

computing and communication infrastructure onboard the 

autonomous vessels. In our approach, we propose instead a less 

networking and computationally intensive method for safety 

assessment in route planning. Our approach is employing a 

neural network to classify ship traffic images received from an 

infrastructure that is already available on most commercial ships 

today- AIS, according to their risk.  

 

2.2 Data collection 

Amongst the communications systems onboard ships, the 

Automatic Identification System (AIS) plays a prominent role as 

a context awareness and navigation safety device. AIS system 

originally designed to avoid ship collision, has more recently 

been used also for ship tracking [8]. AIS is a worldwide 

automatic positioning system based on vessel transponders that 

transmit a signal in the VHF band, to alert other vessels and 

shore stations with AIS receivers to the presence of that vessel. 

The signals and accompanying information can then be received 

by any vessel, land station or satellite, fitted with an AIS 

receiver, and is typically displayed on a screen of chart-plotting 

software application. 

AIS Provides the following types of information [9]: 

• Fixed, or static information including data such as: 

Maritime Mobile Service Identity, Call Sign and name 

of vessel. 

• IMO Number, length and beam, type of ship and 

location of position-fixing antenna. 

• Dynamic information, which, apart from navigational 

status information, is automatically updated from the 

ship sensors connected to AIS. This includes the 

ship’s position with accuracy indication and integrity 

status, position time stamp, course over ground, speed 

over ground, heading, navigational status and rate of 

turn. 

Using publicly available AIS data from Marine Traffic 

(www.marinetraffic.com), we recorded ship traffic in the area of 

interest, an area of approximately 40km2 off the English coast. 

The recording frequency was 10 minutes, repeated over a period 

of 7 days. The recorded data included the types, headings and 

speeds of all ships in the recorded area. Maps visualizing the 

ships’ positions and headings were then stored as computer 

images. An example of such map is shown in Figure 3. 

Effectively, these maps visualize the relative positions and 

headings of the ships in the area at the time of the recording. As 

per the example of Figure 1, different sizes and colours of the 

ships indicate different types of ships (e.g. fishing boats, ferries), 

and speeds (e.g. fast ferries, versus slower container ships, 

tankers, etc. 

 

2.3 Creating the test and validation image sets 

We partitioned the recorded area using a grid, with the size 

of the grid cell selected according to rules for safe ship 

navigation, as explained in the following section. We manually 

analysed the images in all cells, and by interpreting the 

COLREG rules, explained in the previous section, we identified 

situations which represented high collision risk, as well as 

situations where the risk is low. The size of the selected grid cells 

was based on the criterion of safe distance between ships, which 

allow different ships to perform manoeuvres in order to cross 

each other’s path, overtake each other and so on, without 

creating collision risks. As an example, the left side of the image 

in Figure 1 represents a high-risk situation because the ship at 

the bottom of the figure approaches the other ships from an 

inappropriate angle, and is in close proximity to them.  In 

contrast, ships on the right side of the image are following 

COLREG rules, and are therefore, in a low-risk situation.  

Additional criteria were also employed using information about 

the ship type (visualized with different shape sizes and colours). 

As an example, the smaller ship on the left side of Figure 1, is a 

fishing boat which can make it harder to detect by the larger 

ships as it approaches them. 

 
Fig. 1. Examples of high (left) and low (right) risk 

situations 

 

 

2.4 Selection of Neural Net  

Deep neural network have recently attracted attention 

because of their superior accuracy compared to previous neural 

network architectures. Deep neural networks can achieve human 

equivalent accuracy in image classification, object detection, 

and segmentation. In particular, Convolutional Neural Networks 

(CNNs) have been one of the most capable innovations in the 

field of computer vision, as they have outperformed traditional 

computer vision techniques, and have produced state-of-the-art 

results. CNNs have proven to be successful in many different 

real-life case studies and applications, such as traffic sign 

classification for self driving cars [10], traffic flow prediction 

[11] and other. 

Keras [12], which was selected as the neural network 

framework to implement our prototype, is an open-source 

software library that provides a Python interface for the 

TensorFlow machine learning/AI library for image analysis 

containing pretrained image classification models. However, as 

such models typically were obtained from real objects and 

artifacts, not similar to the image patterns of our data, we had to 

implement and train our own neural network model. 

 

2.5 CNN modeling and training 

A dataset of 200 images consisting of representative 

examples of high and low risk pattern classes, obtained from the 

ship traffic grid was developed. Each image was manually 

labelled as high or low risk by applying safe shipping criteria. 

The concept of ship domain is often used in marine navigation 

and marine traffic engineering as a safety condition. The basic 

idea behind those applications is that an encounter of two or 
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more ships can be considered safe if neither of ship domains is 

intruded by other ships [13].   For the selection of the grid cell 

size the safe distance between ships, approximately one nautical 

mile (1.852km), was used as a rule of thump. However, this safe 

distance  can vary with ship size and type, course and speed, 

visibility, hydrometeorological conditions, navigational 

obstructions etc. 

Out of the created dataset, 160 images were selected for 

training and 40 for validation.  The images were converted to a 

standard 100x80 pixel, grayscale format. Due to the small size 

of training data, we employed data augmentation which 

increases the diversity of training by applying random 

transformations such as rotation of images.  

A Convolutional Neural Network (CNN) can be viewed as 

a series of convolutional layers, followed by an activation 

function and then by a pooling (downscaling) layer, repeated 

many times. The pattern recognition power of CNNs comes 

from the repeated layering of operations, each of which can 

detect slightly higher-order features than its predecessor.  The 

first layer detects simple features such as edges in an image, 

while subsequent layers detect hierarchically more complex 

images. Subsequently, as shown in Figure 2, we opted for a six 

layer CNN as that was deemed adequate for the complexity of 

the images in the dataset. Additionally, we included a dropout 

layer in the neural network model, which is one of the 

regularization techniques to reduce overfitting in deep 

learning models  The overall architecture of the developed CNN 

model is shown in Figure 2.  

3 Results analysis 

 

After training of the network for 25 epochs and validating 

it, testing was carried out by using a set of test data taken from 

unseen images. Eight high risk images and seven low risk 

images were used as the test data. The classification decisions 

made by the neural network are shown in Table 1. From Table 1 

data we calculate the True Positive Rate (TPR) of high-risk 

identification using Eq. 1, thus obtaining a TPR of 77.7%. Using 

Eq. 2 we obtain false negative rate (FNR), i.e., the ratio of high 

risks that have been wrongly classified as low risk by the total 

number of classified high risks, as 12.5%. This means that 

approximately 1 out of 8 high risk situations are nor detected by 

the system.  The relative low PTR and high FNR confirm that 

training of the neural network using more data is required. It 

must be noted however that in risk management, low false 

negative scores are more critical than those for the other metrics. 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (Equation 1)  𝐹𝑁𝑅 =

𝐹𝑁

𝑇𝑁
 (Equation 2) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (Equation 3) 

  𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (Equation 4)   

𝐹1𝑆𝑐𝑜𝑟𝑒 = (2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
)  (Equation 5) 

 

 

In a similar manner we use Eqs. 3 to 5, to obtain precision, 

recall and F1 scores (for high-risk class) of 0.667, 0.889 and 

0.762 respectively. These scores can be improved with the 

addition of training data and the redesign of the neural network 

architecture, as explained in the final section of this paper. 

 

3.1 Calculating the relative frequency of the various 

risk patterns 

For maritime safe navigation it is useful to be able to 

identify the most common hazardous situations and patterns. To 

do so, we used a sub-image detection program [14] to analyse 

82 different traffic images like the one shown in Figure 3, to find 

the frequency of occurrence of the different high-risk traffic 

patterns.   We employed template matching which is a method 

for searching and finding the location of a template image in a 

larger image, available in the OpenCV computer vision library 

[15]. The relative frequencies of the top most frequent (unique) 

patterns are shown in Figure 4. 

We propose that future maritime traffic monitoring systems 

similar to the one reported in [16], can utilise methods similar to 

ours, in order to analyse maritime traffic maps that are 

synthesized from sources of information such as AIS data, aerial 

data, radar data and similar sources.  The traffic monitoring 

systems could then detect any high-risk collision situations in 

the current traffic, based on a library of high risk patterns such 

as the one proposed in this paper. As shown in Figure 3, detected 

images are enclosed in rectangles for easier visual identification. 

 

  

 
 

 
Fig. 2. Architecture of the employed CNN 
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Table 1. CNN Classification test results 

 
 

 

 
 
Fig. 4. Most common unique high-risk patterns 

 

Fig. 3. Automatic detection of high risk patterns in a traffic map 

 

4. Discussion, conclusions and further work 
 

The feasibility, benefits and disadvantages of the proposed 

approach, needs to be considered in the overall context of 

autonomous vehicles. and the requirements imposed by those on 

the data size and computational intensity of machine 

learning/deep learning approaches. In general, some of the main 

challenges when training a computer vision model involve data 

gathering, dataset labelling, object detection, semantic 

segmentation, and semantic instance segmentation. Our 

approach does not require the identification of discrete objects 

(ships), i.e., semantic segmentation, or their individuation (as 

‘ship1. ‘ship2,..), i.e., semantic instance segmentation.  Instead, 

our approach classifies the entire image according to its 

navigation risk. However, similar to all other machine learning 

approaches, ours also requires data gathering and labelling. 

Fortunately, in shipping, data gathering can rely on many diverse 

and usually open source datasets that are available  these days 

from sources such as AIS. Labelling however, is currently 

carried out manually, something that represents a bottleneck for 

the efficiency of the proposed approach. Moreover, labelling 

must be carried out by experts in sea safety rules, i.e., it cannot 

easily be outsourced or crowdsourced to larger groups of 

(untrained) people.   

Our work has contributed to autonomous route planning 

for unmanned sea (surface) vessels, in the broader context of 

autonomous robot navigation, but focusing more on route safety 

assessment (from a navigation perspective). Path planning is an 

important process for autonomous mobile robots to move from 

a starting point to a destination without hitting any obstacles 

[17]. Path planning can in general, by divided into global path 

planning when robots have information about the environment 

such as obstacles, and local path planning where such 
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information is not available, possibly because the environment 

is dynamic [17]. In this sense, our approach can be applied to 

both global and local path planning, in the sense that the 

autonomous ship planner can first plan a safe route based on the 

traffic pattern image classification of the traffic pattern images, 

but as the plan is executed the potentially changed environment 

needs to be re-assessed periodically, since new ships or other 

obstacles can appear, or ships may change their position and 

course unexpectedly.   

There are several paths for extending the research 

described in this paper, that include: 

• Expansion of the classification range of traffic pattern 

from binary (i.e., ‘risk’ or ‘no risk’) to multi-valued 

where different degrees of risk (e.g., ‘low’, ‘medium’, 

‘high’) can be defined, expressed as crisp or fuzzy 

values. A multi-level classification of risk would 

enable more sophisticated route planning algorithms 

to be developed for the autonomous route planner. 

• Experimentation with different, more efficient, image 

classification neural networks such as Vision 

Transformers (ViT). Recent research has 

demonstrated that ViTs exhibit better performance 

and greater efficiency than CNNs [18]. 

• Combination of our approach with other route 

planning algorithms such as velocity obstacle (VO), 

which is a technique that calculates the set of all 

velocities of a robot that will result in a collision with 

another robot at some moment in time, assuming that 

the other robot maintains its current velocity.[19] In 

the context of autonomous route planning, the route 

planner would use the planned vessel speed to 

calculate the VO and then use the traffic map to select 

the relevant image, based on chosen direction and 

speed. Next, based on the collision risk of the image, 

the route planner might decide to alter speed or course 

in order to avoid the collision risk.  

• Continuous training: In the current approach models 

are trained before deployed. However, autonomous 

ship navigation requires reasoning and decision-

making based on environmental information in real 

time [4]. One of our future research plans is to solve 

this problem. 

• Expansion of the neural network training set, with 

additional images obtained from AIS datasets and 

other sources: In general, it is relatively easy to obtain 

additional ship traffic data from sources such as those 

reported above, however there is a bottleneck in the 

process of manually classifying (labelling) such data 

before they can be used for training the neural 

network.  Towards alleviating this obstacle, automatic 

or semiautomatic labelling techniques could be 

investigated.  As said previously, it is, however, 

important that any future image classification systems 

primarily minimize the false negative detection rate, 

as failing to detect potentially dangerous situations 

represents a serious shortcoming. 

In conclusion, this paper has proposed a novel approach for 

the detection of collision risk situations in maritime traffic, that 

relies on the analysis of ship traffic imagery with the use of deep 

learning image classification techniques.  Collision risk is a 

threat for the shipping industry and the rules for safe navigation 

are both complex and, in some aspects, ambiguous.  This, 

combined with advances in autonomous ships makes more 

important the development of robust techniques for situation 

awareness and collision avoidance in shipping and maritime. 
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