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Abstract

The new 5G mobile network promises to enhance existing services or include new ones to address key challenges presented
by smart city stakeholders (citizens, municipalities, politics, industries, architects, etc.) to improve system implementations.
These challenges cover various smart city fields such as transportation, environmental monitoring, healthcare, industrial
automation, smart grid, etc. Thus, the main objective of 5G functionalities is to provide solutions to the various identified
needs, which are defined as constraints and requirements. Therefore, three categories of 5G-based use cases have been
defined: Enhanced Mobile Broadband (eMBB), Massive Machine Type Communications (mMTC), and Ultra-reliable and
Low Latency Communications (uRLLC). Each group involves a set of use cases and characterized by specific technical
features that address the corresponding needs. However, accurate and real-time positioning information is a vital requirement
common to all three categories, but the degree of performance varies across scenarios and descriptions. Therefore, this work
presents a summary of existing positioning technologies crossed with wireless technologies and smart city use cases to
highlight the potential that will add accurate and real-time positioning to 5G capabilities. 5G promises decimeter accuracy
in some critical use cases.
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1. Introduction
The new 5G mobile communication standards are defined
under the Third Generation Partnership Project (3GPP). The
development of 5G is currently continuing to be standardized in
form of phases [1], it includes new technical types of features,
which effectively offer fast, reliable, dynamic, and everywhere
available mobile network services. In addition, it appears to
enhance the mobile data potential of previous generations (e.g.,
4G, LTE/LTE-Advanced) [2, 3].

Many proposed use cases defined by various stakeholders
highlight the need for their existence in our society with varying
requirements and capabilities [4–6]. The NGMN white papers [7]
describe 5G as a multifaceted system capable of supporting many
combinations of throughput, latency, reliability, and availability,
simultaneously under different constraints in different use cases,
where Internet of Things (IoT) and mobile internet based use cases
and their challenges become the main driver of the technology
evolution [4, 8–10]. As a result, the 5G system sponsors a

considerable number of use cases, which address the challenges
of everything and everyone (cities, industries, digital lifestyle,
transportation, environmental protection, education, and more).
In this context, several use cases share similar descriptions and
requirements. Therefore, it was useful to group them into clusters
that share similar description and requirements. For example,
the ITU-R [11] classified these use cases into three categories,
with each category supporting many of the use cases specified
by IMT-2020 [12–14] and the NGMN [7], and identified by their
key performance indicators (KPIs). The three categories are as
follows:

• eMBB is the first phase of 5G systems, which is also
considered as an enhancement of services from previous
generations of communication [15]. It offers high bandwidth
and data rates for services such as ultra-high video streams (Gb
in a second) and as well as the application of virtual reality
or augmented reality (smart work, 3D video 4K/8k). eMBB
addresses the challenges of the digital lifestyle, promoting
various intelligent interactions across the world [12].
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• mMTC stands for high density and communications between
various and massive numbers of connected objects. It supports
applications that require the distribution of massive devices.
Therefore, this category can handle the exponential increase
of connections (up to one million per square kilometer). The
data rate to be transmitted by communication is generally
low, and the transfer speed is not very restrictive. However,
reducing power consumption and optimizing communication
between terminals are the main challenges here. In addition,
5G systems must be able to support computational and
analytical power throughout the network infrastructure.
Sharing location information between devices is also a key
parameter to improve system implementations, such as energy
consumption. Typical domain in this category are smart
services in city, such as smart home, smart building, and
smart navigation in an indoor environment where the main
objectives are the ability to optimize public resources and
improve services to network users [16].

• uRLLC corresponds to applications requiring sensitive real-
time communication, low latency, and high reliability; where
communication failure or loss is not accepted. Therefore, the
interaction of positioning information between massive IoT
devices is also critical, requiring 100% reliability of device
positioning, millisecond latency, and high consistency. Key
applications in this category include smart manufacturing,
security and emergency services, telesurgery (remote medical
surgery), smart transportation, distribution automation in
smart grid, etc.

According to many important studies, such as in [3, 17–20],
achieving these KPIs requires challenges in terms of data rate
(eMBB), people and device density (mMTC), network stability,
consistency, low latency and high reliability (uRLLC), as well
as many others ubiquitous service. Real-time availability and
accuracy positioning of information at the base station (BS)
level remains the key factor for implementing and enhancing
various new services. Therefore, 5G offers technologies
like massive multiple-input multiple-output (Massive MIMO),
millimeter wave (mmWave), ultra-dense networks, Network
slicing, non-terrestrial network (NTN), and device-to-device
(D2D) communications to meet the KPIs challenges and improve
positioning performance [1, 21]. However, while our presented
work is part of the 5G-based smart city project, this paper aims
to show the role of 5G positioning technologies to improve smart
city implementations.

Thus, this paper is organized as follows: the next section,
Section 2, presents a summary of existing positioning methods,
it also shows the intersection between positioning methods and
wireless technologies to meet the requirements of use cases. Then
Section 3 presents the critical role of the positioning performance
for the potential implementation of 5G use cases, where it is a
comparison between the performance of positioning services of
different technologies in terms of latency and real-time accuracy.
Section 4 presents an analysis and discussion based on the
literature study. Before concluding in Section 6, some technical
challenges are presented in Section 5, highlighting the role that
positioning methods will play in 5G implementations.

2. Summary of Positioning Methods
The principal goal of the location information is to obtain
knowledge on the position of connected nodes, and more
efficiently, the position of a specific node, which is provided by
means of an estimation method, known as positioning [22]. Such
a system consists of two different devices, namely, anchors and
targets. Anchors refer to any fixed node whose position is already
determined, such as a BS in a cellular network, an access point
in a network, or a specific node whose location is identified by
the Global Positioning System (called GPS). On the other hand,
a target can be any UE, such as tags, cell phones, laptops, or any
other module whose positioning parameter is unknown and needs
to be evaluated using a positioning algorithm. The positioning
evaluation is effectively measured by the average of the wireless
distance, angle, or power profile. In this context, the positioning
method must be identified based on the use case requirements,
as well as the low latency of the information that we need. For
instance, in some use cases related to emergency and healthcare,
industrial automation, indoor positioning, personal tracking, and
many other critical services, real-time and accurate positioning
measurements are recommended with very low errors [23, 24].
However, to estimate the positioning of the target, a positioning
algorithm will be used. Thus, a target communicates and obtains
information only from the anchors, so in an indoor environment,
each device must be connected to known BSs to perform a
range of positioning methods. However, there are three categories
of positioning methods: distance-based methods, Angle-based
methods, and fingerprinting-based methods [21, 23, 25–28].

• Fingerprinting methods are based on power profile evaluations
of the Channel Impulse Response (CIR). In practice, they
are performed in two phases: the training phase and the
localization phase. In the training phase, fingerprints are
collected to estimate locations at known positions. During
the localization phase, the positioning measurements are
performed in real time by searching for the best estimation
with an optimized error. In these methods, the accuracy
depends on the reliability of the training set results. Therefore,
several methods are proposed in the literature to improve
this positioning estimation, such as statistical learning [29],
non-parametric kernel regression [30, 31], and many others
[22].

• Angle-based methods, e.g., angle-of-arrival (AOA), are based
on the triangulation theory to estimate the UE position.

• Distance-based methods are the most famous methods for
their ease of implementation and high real-time accuracy.
These categories include range-based methods, e.g., Time-
of-Arrival (TOA) and Received Signal Strength (RSS), and
range-difference-based methods, e.g., Time-Difference-of-
Arrival (TDOA). The first is a direct measurement of the
distance between nodes (ranging). The second is a differential
measure (or range-difference) of distances between two nodes.
Thus, with the use case design, TOA and RSS can be designed
where positioning can be measured, and the TDOA where it
can be estimated.

The performance of positioning measurements depends not
only on the method used but also on the type of wireless
technologies that play an important role, whether it is Long-
Term Evolution (LTE), Ultra-Wideband (UWB), Bluetooth Low
Energy (BLE), Radio-Frequency Identification (RFID), Wireless
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Local Area Network (WLAN), etc. These technologies offer
different technical properties as well as different advantage and
disadvantage [24]. The technical properties, predefined use cases
scenarios, and type of information play an important role in
improving the performance of the positioning system information,
in addition to the methodology that can be employed, whether the
methodology is cooperative or non-cooperative [22]. The non-
cooperative approach means that the target can communicate and
exchange information only from/to anchors, and the cooperative
means that all nodes communicate with each other, there is
not a fixed node. Therefore, the latter guarantee high accuracy
with low latency, and can be adopted by critical use cases.
Both non-cooperative and cooperative methodologies could be
implemented in the positioning system. The advantage of the
non-cooperative approach is the centralized data sources, but the
problem is the scalability of the computation and the need to add
additional resources. On the other hand, the cooperative approach
is more reliable for distributed environment, but can be critical for
fake exchange which costed time. Therefore, the choice depends
on the goal of the use case and required performance [22].

The Table 1 groups various positioning methods associated
with specific wireless technologies and use cases, and the
corresponding methodology (cooperative or non-cooperative)
[20, 32–36]. Based on the use case scenarios, the table shows
that for the same positioning methods, either a centralized
or distributed trilateration technique can be used [22]. For
example, for TOA and RSS positioning methods (distance-
based methods) and with UWB technologies, the environmental
monitoring scenarios allow the cooperative positioning, since
the sensors are connected in a mixed network, and the sensors
communicate with each other. In contrast, indoor navigation, also
with UWB technology, requires a centralized or non-cooperative
methodology where each device receives/sends information from
a fixed node. Furthermore, this table shows that we can use the
same positioning methods for the same use cases but with LTE
devices, where the target is connected only to known BSs in
such radio technology. This table also shows the advantage of
using UWB. It offers high availability and real-time positioning
accuracy, so it is ideal to be adopted in industrial environment to
improve service performance[24].

It is worth mentioning that Obeidat et al. [37] also present
the advantages and disadvantages of each of the positioning
methods studied, and make comparisons between them in [38].
For example, they show that AOA and TOA suffer from multipath,
but RSS, which is very easy to deploy, does not. This study
concludes that the choice of the appropriate positioning method
depends on many factors, e.g., cost, resources availability, type
of environment (indoor, outdoor, etc.), critical requirements,
adopted network infrastructure, and the level of accuracy also
required [1, 16, 18, 21, 39]. Thus, the following section shows
what the new 5G mobile network will add to optimize the real-time
positioning accuracy performance.

3. Positioning Technologies in 5G
As described before, the real-time accurate positioning of UEs
in a wireless network is becoming increasingly important for
critical use cases such as healthcare, environmental monitoring,
navigation, and devices/vehicles communication [23]. Therefore,
recently, positioning-based technologies in cellular networks

have received increased support to improve the performance
of positioning methods (e.g., E911). In this way, the
positioning services have been integrated into the 3GPP use cases
requirements [40]. Thus, the second release (Release 16) [41] of
the 5G mobile network includes several features to support and
enhance the positioning requirements of its predecessors (LTE).
The main features of 5G that enable more accurate positioning are
the millimeter-wave communication (mmWave) frequency bands
that adopt directional beamforming, with which AOA positioning
methods enable accurate angle estimation, especially in dense
indoor multipath environment [21, 42]. The 3GPP is continuously
working on positioning accuracy in the current release, Release
17 [43], to achieve, in theory, a performance accuracy of 1 meter.
Then, 3GPP promises, in the future, high accuracy up to a few
decimeters in Release 18. Thus, depending on the releases of the
5G standard, the promise of low latency and accurate positioning
can only be expected from Release 17 onwards. However, today,
the features of 5G are in the development phase, especially with
regard to improved positioning accuracy. Therefore, Table 2 [44]
presents the latency and the positioning accuracy in the different
technologies. As shown in this table, the best results in latency
and positioning accuracy are obtained with 5G technology and at
the end of Release 18.

4. Discussion
Based on various studies, this section shows the improvement of
positioning methods to improve accuracy performance.

As mentioned above, 5G Networks rely on mmWave
technology to provide high frequency and bandwidth. The
mmWave enables improved multipath resolution, as well as
distance-based measurement accuracy [45, 46]. Abu-Shaban et al.
[47] investigated the mmWave positioning limit under multipath
channel conditions and reported the limit of the uplink and
downlink positioning errors. While the correlation between some
antennas [1, 48, 49], the uplink is more sensitive to the terminal
direction, which reduces the interference of TOA measurement
by other multipath signals. Lemic et al. [50] specify that only
direct radiation is considered. In [51, 52], the authors proposed
a data-driven deep neural network (DNN) approach to determine
node positioning using a lower frequency spectrum.

As the need for 5G increases, the large-scale MIMO-
based research has improved angle-based methods by enhancing
the multiple signal classification algorithm (MUSIC) [53] and
providing the signal of parameters estimation by the mean of
rotational invariance techniques (ESPRIT) algorithm [21, 54–58].
On the one hand, research on massive MIMO technology has
significantly improved the angular resolution [49], but in multi-
path scenarios, it is still difficult to distinguish the line-of-sight
(LOS) path and locate the user. In response to this problem,
the authors of [46, 56, 59] proposed to directly measure the
positioning distance. Guerra et al. [60] analyzed the maximum
positioning performance that can be achieved using massive
MIMO and mmWave beamforming methods in the single BS
condition. The results in this study show the correlation between
the beamforming observations, thus, this is provided by changing
the number of antennas in terms of multipath reduction and
positioning precision. Moreover, the combination of technologies
(e.g., femtocells, mmWave, massive MIMO, etc.) could reduce
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Table 1. Positioning methods intersected with wireless technologies and dedicated use cases.

Wireless Technology Positioning Methods Approach Use Cases

TDOA Non-cooperative Navigation, health care, tracking, industrial
automation

LTE TOA, RSS Non-cooperative Entertainment, indoor navigation,
emergency services

AOA Non-cooperative Radar, Indoor Tag positioning

TDOA Non-cooperative Navigation, health care, Personal tracking,
industrial automation

TOA, RSS Cooperative environmental monitoring, industrial
monitoring, healthcare, logistics

UWB TOA, RSS Non-cooperative Entertainment, indoor navigation,
emergency services

AOA Cooperative Robot navigation

AOA Non-cooperative Radar, indoor tag positioning

Fingerprinting Non-cooperative Health care, positioning, retail, industrial
monitoring

BLE RSS Non-cooperative Personal tracking, storage database

AOA Non-cooperative Radar, indoor tag positioning

WLAN RSS Non-cooperative Personal tracking, storage database

Fingerprinting Non-cooperative Healthcare, positioning, retail, industrial
monitoring

RFID RSS Non-cooperative Personal tracking, storage database

the issue of bottlenecks in a large infrastructure of indoor
positioning systems [60].

The RSS-based method measures the strength of the received
signal representing the distance between the user and the
access point, it is one of the cheapest and easiest methods to
implement, and it does not require any modification of existing
systems [16, 61]. Many studies, such as [45, 59, 62–66], have
adopted mmWave propagation, where the accuracy of RSS-based
positioning depends on the measurement of the direct signal in an
area [48].

Some researchers aim to combine two or more positioning
methods to improve the positioning accuracy, and since the
5G systems support the implementation of various positioning
methods. For example, [20, 59] proposed the hybrid positioning
technique of ToA, AoA, RSS, and fingerprinting on the
positioning accuracy when the number of BSs is less than three.

With the emergence of 5G, some studies [67, 68], have
improved the fingerprint-based positioning methods, where the
fingerprint matching is based on the statistical estimation of the
target signal and the fingerprint library. The maximum estimation
is used to determine the position through the statistics of the

training set. Real-time experiments have been performed with
LTE signals in indoor environments. These experiments enhance
the real-time positioning measurements to provide accurate results
everywhere. Many related fingerprint-based studies rely on
the various probabilistic models to reflect the signal strength
distribution of the reference position, such as Gaussian process
[69], Bayesian network [70], conditional random fields [71], and
more. However, the only drawback, which 5G IoT devices, is the
compression rate of the fingerprint library. Therefore, the database
of fingerprint is still a key challenge in such a positioning method.

5. Technical Challenges
Toward our project, there will be a huge use of distributed IoT
devices in the 5G system, where the positioning information of
the devices can provide the necessary support to optimize the data
transmission. Compared to a dense network, many access points
need to be deployed to improve positioning accuracy. Cooperative
5G positioning of devices in the IoT uses positioning information
between terminals as a data source to improve positioning
accuracy. Safavi et al. [72] proposed a distributed cooperative
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Table 2. Performance of positioning services of 5G and other
Technologies in term of accuracy and latency.

Technologies latency (s) positioning
accuracy (m)

5G Release 16 5 ms < 3 m
5G Release 17 <5 ms 1 m
5G Release 18 < 5ms 0.01 m
LTE 5ms 25 m
UWB 10 ms 0.01-2 m
BLE 10-20 ms 2-5 m
Wlan 10 ms 1- 5 m
RFID < 1ms 1 m

linear iterative method to estimate the position of IoT devices.
This solution is also suitable for dynamic scenarios, in which the
positions of the UEs change. The drawback is the accumulated
error from the positioning measurements. In this context, studies
[17, 49] have suggested the conventional minimum mean square
error (MMSE) method, removing unreasonable estimates to
optimize errors of positioning problems. Bueher et al. [73]
presented the status of cooperative positioning in 5G systems and
IoT applications in terms of theoretical limitations, algorithm,
and practical challenges, and relied on range-based as well as
range-angle-based techniques.

Nowadays, 5G-based positioning research promises many
improved results, but so far, everything is still in the theoretical
phase and faces several challenges:

1. The eMBB functions offer the enabled use cases with high
data rates over a wide coverage area, the positioning accuracy
is very important to achieve the aforementioned goal, so some
technical challenges need to be discussed:

• The positioning of different devices is necessary to
support the enhancement of the quality of service
and data transmission, as well as the enhancement of
energy consumption by improving the performance of the
computational resource allocation [48];

• In addition, interaction and implementation of more
than one positioning method in a density and dynamic
environment could improve the low latency, reliability,
and validity of positioning results.

2. The functions of uRLLC provide real-time and reliable
communication between devices. Thus, based on the
positioning methods, the real-time integration of the location
of different devices can ensure the reduction of errors during
communication.

3. The functions of mMTC support the concept of power
consumption and connection management of a large number
of devices [1, 74]. In such scenarios, positioning technologies
are needed to accurately locate cooperative devices to improve
power consumption.

6. Conclusions
The new 5G mobile network promises to effectively digitize
our entire physical world and meet the requirements of smart
city stakeholders (citizens, municipalities, politics, industries,
architects, etc.)[75]. For this reason, 5G has grouped the different

use cases into three types of categories, which are: eMBB, mMTC,
and uRLLC [21]. Each category involves a set of use cases sharing
similar descriptions and needs [21].

In our work, our main challenge is to improve the potential for
positioning accuracy in smart city platforms. However, this goal
is strongly linked to the progress on 5G standards, these standards
are the basis for all related work. It is also important to mention
here that any technical specification normally requires important
time before it can be implemented and used in a practical way
(we mean here the know-how related documents). Therefore,
we have limited the work in this paper to a summary of the
literature on positioning technologies; a discussion of on the study
of feasible positioning technologies based on 5G communication
technologies; followed by the presentation of some technical
challenges to present the current state of the positioning system,
and its potential benefit of integration into 5G systems. 5G
Release 18 promises to improve the positioning performance of
5G, especially for IoT-based use cases.

Our future work will focus on identifying the use cases that will
be implemented in our smart city project, as well as improving
the methodologies for accurate real-time positioning. The design
of the defined use cases will be performed taking into account
the requirements of the project partners (municipalities). Then,
a proof of concept will be conducted to effectively evaluate the
implementations and to initialize new topics for future research.
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