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Abstract 

In this paper, the problem of query processing in spatial data streams is explored, with a focus on the spatial join 

operation. Although the spatial join has been utilized in many proposed centralized and distributed query processing 

strategies, for its application to spatial data streams the spatial join operation has received very little attention. One 

identified limitation with existing strategies is that a bounded region of space (i.e., spatial extent) from which the spatial 

objects are generated needs to be known in advance. However, this information may not be available. Therefore, two 

strategies for spatial data stream join processing are proposed where the spatial extent of the spatial object stream is not 

required to be known in advance. Both strategies estimate the common region that is shared by two or more spatial data 

streams in order to process the spatial join. An evaluation of both strategies includes a comparison with a recently 

proposed approach in which the spatial extent of the data set is known.  Experimental results show that one of the 

strategies performs very well at estimating the common region of space using only incoming objects on the spatial data 

streams. Other limitations of this work are also identified.  
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1. Introduction 

Many applications that continuously generate data exist today 

[1]. One example is a stock market that generates data on the 

volume of stocks that are traded every day. As shares are 

traded, this information can be transmitted on a data stream. 

Another example is a remote sensing application where 

alterations to specific locations of land are tracked. Any 

identified differences to a location can be indicated by using a 

region (e.g., rectangle) that identifies the location in space of 

the specific location.  The latter is an example of a spatial data 

stream in which object data (i.e., objects that represent specific 

locations in space) [3], as opposed to simple numeric or 

alphanumeric data, are generated and transmitted along the data 

stream.   

The data in two or more data streams can be related based on 

specific criteria. For example, given two spatial data streams – 

one stream which tracks regions of a large commercial farm 

where the yield of a particular area falls below some expected 

threshold, and a second stream that tracks regions where a high 

number of pests (e.g., rats, mice) are detected. If areas between 

these two streams overlap – partially or completely – this may 

provide one indicator of the reason behind the unexpectedly 

lower yield. This is an example of a spatial join, which relates 

objects between two sets using a spatial predicate (e.g., 

overlap). 

Over a significant amount of time, streaming data applications 

generate a continuous and very large volume of data [1],[2]. 

This leads to several issues. First, in addition to its (eventual) 

very large size, not all of the data that is required for processing 

has arrived at the time it is needed. In addition, in a data stream 

application the amount of memory available for maintaining 

data is very small when compared to the amount of incoming 

data, which means some data items must be deleted in order to 

make room for the incoming items. Finally, many data items in 

the stream can become invalid over time – for example, when a 

change to a specific data item occurs and the update has not yet 

arrived [1],[2] – and must be deleted.  These issues are 

magnified when dealing with spatial data. Since its size is 

greater than that of alphanumeric data, fewer instances of it 

will fit in the same amount of streaming data memory as 

alphanumeric data. In addition, the reasons for spatial data 

becoming invalid may also differ, as we are dealing with data 

with multiple dimensions and in specific locations in space. 

Referring back to the earlier example, if the number of pests in 

an of farmland is no longer considered high, this would render 

the region representing it is considered no longer valid.  

These issues with spatial data streams also introduce challenges 

with strategies that operate on the data. One operation that 

needs to be reconsidered in in the context of spatial data 

streams is the spatial join [4]. Given two object sets X={x1, 
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x2…xm} and Y={y1, y2…yn}, a spatial join matches pairs of 

objects between the sets (i.e., xi, yi) using a spatial predicate, 

such as overlap, containment, nearest neighbour, or direction. 

However, traditional spatial join processing requires that all 

objects are available at the time of the join. However, this may 

not be possible for objects that are transmitted continuously on 

a spatial data stream. In this situation, each object must be 

processed for the spatial join immediately on arrival, as it may 

have already been required for the join. In addition, decisions 

must be made on: 1) whether to keep this object, as it may be 

required for future joining with an object that has not yet 

arrived, 2) whether to delete the object later on, if it has been 

found to be invalid, and 3) whether to delete one or more 

objects in order to make room for new ones that have arrived 

[1].  

Therefore, new strategies are needed for managing spatial 

stream data, as well as for processing operations in light of the 

data stream environment. This work focuses on the latter, and 

specifically on the adaptation of the spatial join operation for 

processing spatial data streams.  

Previously proposed strategies that employ spatial joins for 

query processing in spatial databases can be classified as 

follows: for centralized queries [5],[6],[7],[8],[9],[10], for 

distributed queries [11],[12],[13],[14],[15],[16], and for spatial 

data stream queries [3],[17].   

Significant work has been proposed for both centralized and 

distributed query processing. However, we see that limited 

work has been proposed for spatial data stream query 

processing involving spatial joins. In addition, the limitations 

of these two approaches include the repeated spatial join 

processing of the same objects, and the requirement that the 

containment area (i.e., spatial extent) of all objects generated 

by a spatial data stream must be known in advance. It is not 

always possible to know this latter requirement – at least not 

accurately.  

Therefore, to attempt to overcome the limitations of the 

previously strategies, two new strategies are proposed for 

spatial data stream joining strategies. Both strategies do not 

require that the spatial extent from which the spatial data 

stream objects are drawn be known in advance, and do not 

perform repeated spatial joining of the same two objects. Both 

strategies estimate a common spatial extent for all spatial data 

streams participating in the spatial join, from the incoming 

objects themselves. The first strategy (Sliding Window) uses 

an initial sliding window of objects obtained from two spatial 

data streams to estimate a common spatial extent. The second 

strategy (Incremental) utilizes the first object from both 

incoming spatial data streams to create an initial common 

spatial extent, and incrementally (and selectively) grows the 

common region using more objects from the spatial data 

streams as they arrive. The experimental evaluation that was 

performed includes a comparison with an existing approach 

that uses a pre-determined common spatial extent. The results 

show that the Sliding Window strategy significantly 

outperforms the Incremental strategy. It also obtains results that 

are comparable to the existing approach.  

The rest of this paper proceeds as follows. Section 2 

summarizes related work in different areas of spatial join 

processing. Section 3 presents the background information that 

is needed for both proposed strategies.  Section 4 presents the 

two proposed strategies that attempt to overcome the limitation 

of existing strategies. Section 5 presents the methodology and 

results of the performance evaluation and comparison. Finally, 

Section 6 concludes the paper and presents some future 

research directions that arise from this work.  

2. Related Work 

In this section a summary of previously proposed strategies 

that utilize a spatial join for query processing is presented. 

Spatial query processing strategies that utilize the spatial join 

can be organized as follows:  

• for centralized queries [5],[6],[7],[8],[9],[10],  

• for distributed queries  [11],[12],[13],[14],[15],[16], and 

• for queries on spatial data streams [3],[17].    

Several strategies for processing spatial joins focus on 

partitioning approaches. Patel and Dewitt [5] propose a 

partition-based strategy for performing a spatial merge join. 

Using the spatial extent for all objects participating in the join, 

the authors partition the space into multiple regions before 

creating one bucket for each region that contains the objects for 

that region. Each bucket is the processed for spatial predicate 

matches between objects. Zhou et al. [7] extend the approach 

of Patel and Dewitt for a parallel execution environment, 

considering both CPU and communication costs. Arge et al. [8] 

also propose a partition-based spatial join strategy that also 

utilizes plane sweeping. The spatial extent is partitioned 

vertically, with each strip processed separately using a plane 

sweeping algorithm.  

Strategies for processing distributed spatial queries focus on 

improving the spatial semijoin approach for handling spatial 

joins and applying the new strategy to distributed query 

processing. Abel et al. [11] and Tan et al. [12] propose two 

strategies to speed up the processing of a semijoin-based spatial 

join. The first utilized the leaf-level minimum bounding 

rectangles obtained from a spatial index by an R-tree to 

represent the spatial attribute, while the second utilized a quad-

tree key representation of the attribute. The authors recommend 

the first for a larger spatial attribute and the second for a 

smaller one. Karam and Petry [14] extend the first approach of 

[11],[12] by considering minimum bounding rectangles from 

different levels of an R-tree for the spatial attribute. Kalnis et 

al. propose a spatial join strategy where the query site is a 

mobile device. Their goal is to reduce the data transmission 

cost from two non-cooperating sites by pruning data that will 

not be part of the final result before it is transmitted to the 

mobile device. Farruque and Osborn [15] also propose two 

strategies to improve the processing and data transmission cost 

of a semijoin-based spatial join. Both utilize a partition of the 

common spatial extent that objects occupy, and also a 

representation of the cells that contain objects. Their first 

strategy uses the indexes of the partition (i.e., where objects 

reside) to represent the spatial attributes, while their second 

strategy utilizes a Bloom filter [18] representation of the 

partition and where objects are located. Both are applied in a 

general distributed spatial query processing strategy. Osborn 

and Zaamout [16] propose a general strategy for distributed 

spatial join processing that considers multiple sites and 

minimizes data transmission costs. Their strategy begins by 

identifying the smaller participating relations, before shipping 

the spatial attribute from each to a site with a larger relation. A 

semi-join-based join is performed on the larger relations, with 

the qualifying identifiers shipped back to the sites of the 

smaller relations in order to select qualifying tuples. All 

qualifying tuples are then sent to a central query site for final 

spatial join processing.  

Recently, two strategies have been proposed for spatial query 

processing on spatial data streams. The progressive spatial join 

strategy proposed by Kwon and Li [3]  works by joining the 

same pair of objects multiple times using different 

representations of them, beginning with a minimum bounding 

box, and increasing the complexity of the representation for 
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subsequent joins This reduces the cost of the spatial join as 

simpler representations are computationally less expensive to 

join, and can also prune object pairs that cannot be joined [3]. 

Osborn [17] proposed several strategies that use a conventional 

spatial join, or a bit-array join (i.e., similar to a Bloom join 

[18]). All strategies utilize a common region (i.e., common 

spatial extent) between the two spatial data streams, in order to 

prune objects that would not be part of the spatial join. 

Therefore, significant work has taken place for applying spatial 

joins in various strategies to centralized and distributed query 

processing, with very little work having taken place in applying 

spatial joins in stream query processing. In addition, existing 

strategies have one or more of the following limitations:  

• the assumption that all participating objects are available 

for the joins (i.e., an object cannot be transmitted at a later 

time and still be considered “current” for the spatial join.  

• the repeated spatial join of the same pair of objects. 

• the spatial extents of the individual spatial data streams 

must be known in advance. It is not always possible to 

know this latter requirement – at least not accurately.  

Therefore, two new strategies are proposed in this paper that 

focus on overcoming these limitations. Both strategies do not 

require that the objects be available at the time of the join, and 

that the spatial extent from which the spatial data stream 

objects are drawn be known in advance. In addition, they do 

not perform repeated spatial joining of the same two objects.  

Both strategies are proposed in the next section.  

3. Background 

This section presents the required background for 

understanding the proposed work. After introducing the 

symbolic notation used in this paper, the terms spatial data 

stream system, sliding window, and spatial join are defined. 

Finally, the Spatial2 strategy [17] is summarized, which is the 

strategy used for comparison in Section 5.  

3.1. Symbolic Notation 

 
The following symbols are used throughout this paper:   

• S1 and S2 are two spatial data streams which transmit 

objects to the spatial data stream server. 

• o1 and o2 are the current objects arriving from S1 and S2 

respectively.  

• E1 and E2 are the spatial extents that contains objects S1 

and S2 respectively.   

• CR is a common region of space shared by both S1 and 

S2. It is composed from the overlap of E1 and E2, 

• RS is the result stream (i.e., output stream). 

• SW is a sliding window.  

• numobj(SW) depicts the size of SW (or, the number of 

objects currently in SW). 

• oswx, x = 1 to numobj(SW) are the objects that have been 

placed in SW from both S1 and S2. 

3.2. Data Stream System 

 

Fig. 1 depicts an example data stream system.  There are two 

input streams, which continuously create and transmit data to a 

server, which serves as the stream data manager and processor. 

For the work to be proposed here, it is assumed that the server 

contains a query processor that processes data immediately on 

its arrival. Any generated results from query processing are 

transmitted on the result data stream to some other remote 

destination [2]. For spatial data streams, all data that is  

generated, transmitted, and produced on the server is spatial 

data, which is some combination of point and/or object data 

that has a location in space.   

 

 

 
 

Fig. 1. Data stream system 

 

Since a limited amount of data that arrives from a data stream 

can be stored in stream memory at a time, decisions must be 

made concerning which data to store and which to delete. 

Several approaches have been proposed for this [1]. One 

approach for managing incoming stream data is called a sliding 

window.  Conceptually, it is a view of a subsequence of the 

data at a given time, and after the subsequence is processed, 

this view is moved along the sequence to process other 

subsequences. In a data stream system, a sliding window can 

be seen as a limited size memory that stores incoming stream 

data for some finite amount of time. When the sliding window 

is full, some data must be removed in order to accommodate 

more incoming data from the stream. By definition, a sliding 

window uses a first-in-first-out (FIFO) strategy – in other 

words, the data that has remained in the sliding window the 

longest is chosen for removal. The work proposed here utilizes 

the FIFO strategy for object removal. However, this work also 

utilizes the least recently used (LRU) strategy. The LRU 

strategy determines which objects have not been accessed in 

the longest time (e.g., an object for a spatial join) and chooses 

these objects for removal. Both strategies are employed to 

determine if one approach is superior with respect to keeping 

the most needed data in the sliding window at all times. 

Traditionally, a data stream is defined as unbounded if the 

number of values arriving on the stream was unknown [1]. For 

a spatial data stream, the term unbounded requires an 

additional component. In addition to the number of objects 

being unknown, the region of space (i.e., spatial extent) that the 

objects are drawn from can also be unknown. Therefore, a 

spatial data stream is unbounded if the number of objects is 

unknown, and/or its spatial extent is unknown.   

3.3. Spatial Join 

 
The spatial join [4] matches pairs of objects from spatial object 

sets, S1 and S2 based on the outcomes of some spatial predicate 

such as overlap, containment, direction, etc. The following 

assumptions are made for this work. First, the strategies 

proposed here assume the use of the overlap predicate in the 

spatial join. Second, this work also assumes that the nested-

loop join is utilized for joining portions of S1 and S2. Third, the 

strategies assume that a vector (i.e., geometric) representation 

of polygons is utilized – therefore, a polygon is a sequence of 

connected points. Finally, it is assumed that all objects are in 

rectangular form only, as testing the overlap of any arbitrarily 

shaped objects is costly.  However, the strategies proposed in 

this paper will work for any non-directional predicates, and 

spatial objects of any shape.  
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3.2. The Spatial2 strategy 

 

The Spatial2 [17] strategy will serve as the comparison strategy 

in the evaluation versus the new strategies (Section 5). Spatial2 

achieved high accuracy over the strategy in [3] when compared 

using spatial data streams with smaller numbers of objects [17]. 

Given two spatial data streams S1 and S2, the strategy processes 

the object inputs o1 and o2 as they arrive using the spatial join.  

Sliding window SW stores the most recent set of objects oswx 

that have arrived from both streams and were chosen to be 

maintained. To decide which objects to keep, Spatial2 utilizes 

the common spatial extent (i.e., common region CR) to 

determine the region of space that contains objects from both 

S1 and S2.   

 

 

 
 

Fig. 2. Overlap of two overall regions 

 

Fig. 2 depicts an example of a common region.  Given spatial 

extents E1 and E2 which correspond to streams S1 and S2 

respectively, the grey region is the spatial extent (i.e., common 

region CR) that potentially contains objects generated for both 

streams S1 and S2.  Spatial2 evaluates arriving objects o1 and o2 

for overlap with CR, to determine: 1) if there is the potential for 

overlap with other objects, and 2) whether the object should be 

stored in SW.  The strategy is carried out in the following 

manner [17].  

1. Spatial extents E1 and E2 are transmitted to spatial stream 

query processor for calculating common region CR.  

2. Spatial data streams S1 and S2 transmit objects o1 and o2 

respectively to the data stream processor. If required, at 

most two objects must be removed from SW if no room 

exists for the new objects. Spatial2 utilizes the FIFO 

strategy for object removal.  

3. Object o1 is tested for overlap with CR. If overlap exists, 

o1 is first added to SW, and then evaluated for overlap 

with all other objects oswx in SW that were transmitted on 

S2. Any overlapping pairs that are found, are transmitted 

on the result stream RS.  

4. Object o2 is tested for overlap with CR. If overlap exists, 

o2 is first added to SW, and then evaluated for overlap 

with all other objects oswx in SW that were transmitted on 

S1. Any overlapping pairs that are found, are transmitted 

on the result stream RS.  

5. This is repeated from Step 2 while S1 and S2 continue 

transmitting objects.  

4. Strategies for Unbounded Data Streams 

In this section, two nested-loop strategies for joining two 

spatial data streams are proposed, called Sliding Window and 

Incremental. Both strategies do not require the existence of pre-

determined spatial extents, as these may not be available, or 

require significantly overestimation in order to be applied to 

existing strategies. Both Sliding Window and Incremental are 

proposed below. 

4.1. Sliding window strategy 

 

The Sliding Window strategy creates a common region CR by 

estimating spatial extents E1 and E2 for the spatial data streams 

S1 and S2 respectively. These are estimated using the first 

numobj(SW)/2 objects from each stream. The CR is created by 

performing the overlap of E1 and E2. Then, subsequent objects 

o1 and o2 that are transmitted from S1 and S2 are tested for 

overlap with CR. Only those objects that overlap with CR are 

saved in SW for future joins. The strategy proceeds as follows:  

1. The first numobj(SW)/2 objects from each of S1 and S2 are 

obtained. At the same time, any existing spatial joins are 

processed: 

a. Objects o1 and o2 are received from streams S1 and S2 

respectively, and are placed on SW. If SW is full, either 

FIFO or LRU selection take places to remove existing 

objects. 

b. Object o1 is tested for overlap with all other objects oswx 

in SW received from S2. Any pair of objects that overlap 

are transmitted on RS.  

c. Object o2 is tested for overlap with all other objects oswx 

in SW received from S1. Any pair of objects that overlap 

are transmitted on RS.  

2. Next, E1, E2 and CR are created:   

a. E1 is formed by enclosing objects oswx in SW that were 

transmitted from S1.  

b. E2 is formed by enclosing objects oswx in SW and were 

transmitted from S2.  

c. Finally, CR is created by performing the overlap of E1 

and E2.  

3. At this point, the Spatial2 strategy is utilized to process 

joins with subsequent incoming objects from S1 and S2, and 

to determine which objects are to be added to and removed 

from SW.   

4.2. Incremental strategy 

 

The Incremental Strategy creates CR gradually as objects 

o1 and o2 continue to arrive from S1 and S2.  An initial CR is 

created by encompassing the first o1 and o2 with a spatial 

extent. Then, for all subsequent o1 and o2, if o1 and/or o2 

overlap CR, then CR is increased the accommodate the new 

object(s), and the objects are added to SW (with space being 

made in SW for them if required). Spatial joins with other 

objects in SW are also processed at this point. The strategy 

proceeds as follows: 

1. CR is created initially by creating a spatial extent that 

encompasses o1 and o2. 

2. Then, all subsequent objects o1 and o2 are processed as 

they arrive from S1 and S2:  

a. Object o1 is tested for overlap with the CR. If 

successful, CR is increased to accommodate o1, and 

o1 is added to SW. In addition, o1 is evaluated for 

overlap with all other objects oswx in SW that were 

transmitted from S2. Any pair that have a positive 

overlap result is transmitted on the result stream RS.  

b. Object o2 is tested for overlap with the CR. If 

successful, CR is increased to accommodate o2, and 

o2 is added to SW. In addition, o2 is evaluated for 

overlap with all other objects oswx in SW that were 
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transmitted from S1. Any pair that have a positive 

overlap result is transmitted on the result stream RS.  

3. If required, if SW does not have enough room for o1 and 

o2, then one or two objects are chosen for removal.  

5. Evaluation 

In this section, the empirical evaluation of the Sliding Window 

and Incremental strategies is presented. Both strategies will be 

compared against the Spatial2 strategy [17].  The methodology 

is presented first, followed by the presentation of the results of 

the evaluation. 

5.1. Methodology 

 

The simulated data streaming environment set up for all 

experiments contains:  

• two simulated spatial data streams, and  

• a central stream query processor with one sliding window.  

The sliding window manages a portion of both spatial data 

streams. It also utilizes the first-in-first-out (FIFO) and least 

recently used (LRU) object removal when space was needed in 

the sliding window for new incoming objects.  

Both strategies are implemented in C++ on the Linux Centos 7 

operating system. For evaluation purposes, several spatial data 

streams were simulated by using a sequence of 10x10 

rectangles. This approach was used so that the distribution of 

the data, the size of the spatial extent covered by a spatial data 

stream, and the overlap between spatial extents, could be 

controlled.  Altogether, 20 simulated spatial data streams were 

used in pairs for spatial joins and grouped into two evaluation 

sets. The first used pairs containing 2000, 4000, 6000, 8000 

and 10000 rectangles, respective. The second used pairs 

containing 20000, 40000, 60000, 80000 and 100000 rectangles, 

respectively. Each set of n rectangles were created from a 

spatial extent of dimensions: 

 

(sqrt(n) * 10) x (sqrt(n) * 10) 

 

For example, a 310x310 spatial extent was used to create the 

1000-rectangle sets. In addition, between pairs of rectangle 

sets, the spatial extents had a 25% overlap between them. 

For all strategies, two sets of tests were carried out that varied: 

1) the number of objects sent through each spatial data stream, 

and 2) the size of the sliding window. For each set of tests: 

• Varying the number of objects.  Overall, 20 tests were 

carried out, which can be categorized into five groups:  

o 2000x2000, 4000x4000, 6000x6000, 8000x8000 and 

10000x10000 spatial object stream pairs, with sliding 

window size 16000 bytes (i.e., 1000 rectangles),  

o 20000x20000, 40000x40000, 60000x60000, 

80000x80000 and 100000x100000 spatial object 

stream pairs, with sliding window size 16000 bytes 

(i.e., 1000 rectangles),  

o 2000x2000, 4000x4000, 6000x6000, 8000x8000 and 

10000x10000 spatial object stream pairs, with sliding 

window size 160000 bytes (i.e., 10000 rectangles),  

o 20000x20000, 40000x40000, 60000x60000, 

80000x80000 and 100000x100000 spatial object 

stream pairs, with sliding window size 160000 bytes 

(i.e., 10000 rectangles),  
• Varying the window size. Overall, 16 tests were carried 

out, which can be categorized into five groups:  

o 8000, 16000, 24000 and 32000 bytes (i.e., 500, 1000, 

1500 and 2000 rectangles, respectively), using the 

4000x4000 spatial object stream pair.  

o 8000, 16000, 24000 and 32000 bytes (i.e., 500, 1000, 

1500 and 2000 rectangles, respectively), using the 

40000x40000 spatial object stream pair.  

o 80000, 160000, 240000 and 320000 bytes (i.e., 5000, 

10000, 15000 and 20000 rectangles, respectively), 

using the 4000x4000 spatial object stream pair.  

o 80000, 160000, 240000 and 320000 bytes (i.e., 5000, 

10000, 15000 and 20000 rectangles, respectively), 

using the 40000x40000 spatial object stream pair.   

For all tests, two performance factors were recorded: the CPU 

time (in milliseconds) over the entire join at the stream query 

processor, and the number of joined tuples in the final result 

stream.  Accuracy was calculated from the latter value using 

number of tuples in the overall join result (i.e., assuming a full 

spatial join with no sliding window) that was also determined 

in each strategy. 

5.2. Results 

 

This section presents the results of the evaluation. The results 

for the varying spatial data stream sizes are presented first, 

followed by the results for the varying sliding window sizes. In 

all charts (Figs. 3-18), the following is represented: CR is the 

outcome of the Spatial2 strategy [17], SW FIFO is the outcome 

of the Sliding Window strategy where a FIFO strategy is 

utilized for object removal from SW, Inc FIFO represents the 

outcome of the Incremental strategy where a FIFO strategy is 

utilized for object removal from SW,  SW LRU represents the 

outcome of the Sliding Window strategy where a LRU strategy 

is utilized for object removal from SW, and Inc LRU represents 

the outcome of the Incremental strategy where a LRU strategy 

is utilized for object removal from SW.  

5.2.1. Varying Number of Objects 

 

Figs. 3 to 6 depict the accuracy results for varying the size of 

the spatial data streams while using sliding windows of 16,000 

bytes and 160,000 bytes respectively. As we can see, results 

show that overall, there is a significant decrease in accuracy as 

the number of objects being transmitted from the data streams 

increase. In addition, with respect to accuracy, the Sliding 

Window strategy performs significantly better than the 

Incremental Strategy. Finally, we also see there is little to no 

difference between the use of FIFO and LRU for selecting 

which objects to remove from the sliding window.  

In Figs 3 and 4, the accuracy of the Sliding Window strategy is 

high and almost equal to that achieved by the Spatial2 strategy, 

and for smaller data sizes is at least 80%. This is significantly 

better than the Incremental strategy, which at best only 

achieves a 60% accuracy.  Both strategies, however, have a 

significant decrease in accuracy as the number of objects 

increase, with less than 20% in the larger stream sizes. With an 

increase in the sliding window size, which is shown in Figs. 5 

and 6, improvements - significant ones early on, and more 

modest one with larger stream sizes - are achieved by the 

Sliding Window strategy. However, again it must be noted that 

the Sliding Window strategy performs almost as well as the 

Spatial2 strategy. Therefore, having a pre-determined spatial 

extent from which objects are streamed from is not necessary, 

and comparable results are achieved.  

Figs. 7 to 10 depict the running time results for varying the size 

of the spatial data streams while using sliding windows of 

16,000 bytes and 160,000 bytes respectively. As we can see,  
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Fig. 3. Up to 10000x10000 objects – window size 16K (acc) 

 

 

 
 

Fig. 4. Up to 100000x100000 objects – window size 16K (acc) 

 

 

 
 

Fig. 5. Up to 10000x10000 objects – window size 160K (acc) 

 

 

 
 

Fig. 6. Up to 100000x100000 objects – window size 160K (acc) 

 

 

 

 

 

 

 

 

 

 
 

Fig. 7. Up to 10000x10000 objects – window size 16K (time) 

 

 

 
 

Fig. 8. Up to 100000x100000 objects – window size 16K (time) 

 

 

 
 

Fig. 9. Up to 10000x10000 objects – window size 160K (time) 

 

 

 
 

Fig. 10. Up to 100000x100000 objects – window size 160K (time) 
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Fig. 11. Up to 32K, 4000x4000 objects (acc) 

 

 

 
 

Fig. 12. Up to 32K, 40000x40000 objects (acc) 

 

 

 
 

Fig. 13. Up to 320K, 4000x4000 objects (acc) 

 

 

 
 

Fig. 14. Up to 320K, 40000x40000 objects (acc) 

 

 

 

 

 

 

 

 

 
 

Fig. 15. Up to 32K, 4000x4000 objects (time) 

 

 

 
 

Fig. 16. Up to 32K, 40000x40000 objects (time) 

 

 

 
 

Fig. 17. Up to 320K, 4000x4000 objects (time) 

 

 

 
 

 

Fig. 18. Up to 320K, 40000x40000 objects (time) 
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results show a significant increase in running time as the size of 

the data streams increase.  In addition, the Incremental 

strategies – both with FIFO and LRU object removal - have an 

initial lower running time over the other approaches, but 

ultimately produce a higher running time as the number of 

objects increase.  

5.2.2. Varying Sliding Window Size 

 

Figs. 11 to 14 depicts the accuracy results for varying the size 

of the sliding window with spatial join sizes of 4000x4000 and 

40000x40000 respectively.  From the results, we see that for 

larger data sizes, the accuracy does improve as the size of the 

sliding window increases, but overall, the size of the dataset 

requires a larger sliding window size in order to achieve better 

performance. We also see that there is little to no difference 

between the use of FIFO and LRU for selecting which objects 

to remove from the sliding window. We see similar trends to 

those found for varying the number of objects transmitted from 

the data streams. Specifically, we see that the Sliding Window 

Approach achieves accuracies that are similar to those obtained 

by the Spatial2 strategy, and that the Incremental strategy 

performs poorly.  The only exception is for the larger sliding 

windows and the 4000x4000 spatial stream join, where the 

Incremental strategy does achieve 80% accuracy.  

Figs. 15 to 18 depict the accuracy results for varying the sliding 

window size, with spatial join sizes of 4000x4000 and 

40000x40000 respectively.  Results show that the running time 

increases as the size of the sliding window increases. 

 

We also observe the same trends as above - that the Sliding 

Window strategy has higher running times than the Incremental 

strategy for the smaller sliding window sizes, but the opposite 

occurs as both the sliding window size and the size of the 

spatial data stream increase.  

5.3. Assumptions and Threats to Validity 

 
This section presents assumptions and potential threats to the 

validity of the experimental results.  

The objects used for all experiments are squares in which all 

vertices are double-precision floating point numbers. No 

challenges exist here, as long as non-numeric data is not used 

to represent the vertices. In addition, although the identifiers 

associated with each object are integers, they are represented as 

strings. Therefore, any other representation of the identifier 

should not cause problems with program execution (although 

this was not specifically verified).  However, any non-

rectangular representation of objects will affect these results, as 

the implementation of the strategies only test for overlap of 

rectangles.  

In a sequence of objects, all objects are unique with respect to 

location (i.e., no two objects have the same vertices). Although 

having two or more completely identical objects in a stream is 

very unlikely, the possibility is higher here as all objects have 

an identical representation. In addition, although the execution 

of the problem is not affected by having duplicate objects, the 

results obtained here may vary if this situation existed.  

Both streams send objects to the server at the exact rate and 

time. Any changes to this will affect the results obtained here.  

Finally, the strategies consider heuristically both the validity of 

the input with respect to its potential for participation in a join, 

and whether an object will be required later on. The 

experiments results may differ if the objects arrive in a 

different order. In addition, the strategies assume that all 

outputs (i.e., spatially joined pairs that are transmitted on an 

output stream) are valid forever. Consideration of invalidity of 

outputs will affect the results obtained here.  

6. Conclusion 

In this paper, two strategies for spatial join processing in spatial 

data streams – Sliding Window and Incremental – are 

proposed. The goals of both strategies are: 1) to eliminate the 

need for up-front spatial extents from the participating spatial 

data streams, by estimating the common spatial extent shared 

by the streams, and 2) to prune objects that have little or no 

chance to participate in the spatial join. The first strategy, 

Sliding Window, estimates the common region by using the 

first numobj(SW) objects that arrive from the spatial data 

streams. The second strategy, Incremental, forms an initial 

common region from the first objects - one from each stream - 

that arrive, and grow the common region incrementally with 

subsequent arriving objects that overlap the current common 

region.   

An experimental evaluation and comparison versus the 

Spatial2 approach [17] that uses pre-determined spatial extents 

show that the Sliding Window approach performs significantly 

better than the Incremental approach and, in terms of accuracy, 

almost equal to the Spatial2 approach.  

6.1. Future Work 

 

Future research directions include the following. First, spatial 

data streams with differing arrival times must be considered, as 

currently both are transmitting objects at the exact same rate 

and time. In addition, other strategies for estimating the spatial 

extent of an unbounded spatial data stream must be considered, 

as certain accuracies – especially for larger spatial data streams 

and smaller sliding windows – are still too low. Finally, the 

strategies need to be evaluated with larger spatial data streams, 

and also against the original progressive join algorithm 

proposed by Kwon and Li [3]. 
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