
 Journal of Ubiquitous Systems & Pervasive Networks

Volume 15, No. 2 (2021) pp. 33-41

* Corresponding author. Tel.: 1(403) 329-2294

Fax: +9876543210; E-mail: wendy.osborn@uleth.ca

© 2021 International Association for Sharing Knowledge and Sustainability.

DOI: 10.5383/JUSPN.03.02.005
33

Unbounded Spatial Data Stream Query Processing using Spatial
Semijoins

Wendy Osborn

Department of Mathematics and Computer Science, University of Lethbridge, Lethbridge, Alberta, Canada, T1K 3M4

Abstract

In this paper, the problem of query processing in spatial data streams is explored, with a focus on the spatial join

operation. Although the spatial join has been utilized in many proposed centralized and distributed query processing

strategies, for its application to spatial data streams the spatial join operation has received very little attention. One

identified limitation with existing strategies is that a bounded region of space (i.e., spatial extent) from which the spatial

objects are generated needs to be known in advance. However, this information may not be available. Therefore, two

strategies for spatial data stream join processing are proposed where the spatial extent of the spatial object stream is not

required to be known in advance. Both strategies estimate the common region that is shared by two or more spatial data

streams in order to process the spatial join. An evaluation of both strategies includes a comparison with a recently

proposed approach in which the spatial extent of the data set is known. Experimental results show that one of the

strategies performs very well at estimating the common region of space using only incoming objects on the spatial data

streams. Other limitations of this work are also identified.

Keywords: spatial data streams, stream query processing, spatial join, performance

1. Introduction

Many applications that continuously generate data exist today

[1]. One example is a stock market that generates data on the

volume of stocks that are traded every day. As shares are

traded, this information can be transmitted on a data stream.

Another example is a remote sensing application where

alterations to specific locations of land are tracked. Any

identified differences to a location can be indicated by using a

region (e.g., rectangle) that identifies the location in space of

the specific location. The latter is an example of a spatial data

stream in which object data (i.e., objects that represent specific

locations in space) [3], as opposed to simple numeric or

alphanumeric data, are generated and transmitted along the data

stream.

The data in two or more data streams can be related based on

specific criteria. For example, given two spatial data streams –

one stream which tracks regions of a large commercial farm

where the yield of a particular area falls below some expected

threshold, and a second stream that tracks regions where a high

number of pests (e.g., rats, mice) are detected. If areas between

these two streams overlap – partially or completely – this may

provide one indicator of the reason behind the unexpectedly

lower yield. This is an example of a spatial join, which relates

objects between two sets using a spatial predicate (e.g.,

overlap).

Over a significant amount of time, streaming data applications

generate a continuous and very large volume of data [1],[2].

This leads to several issues. First, in addition to its (eventual)

very large size, not all of the data that is required for processing

has arrived at the time it is needed. In addition, in a data stream

application the amount of memory available for maintaining

data is very small when compared to the amount of incoming

data, which means some data items must be deleted in order to

make room for the incoming items. Finally, many data items in

the stream can become invalid over time – for example, when a

change to a specific data item occurs and the update has not yet

arrived [1],[2] – and must be deleted. These issues are

magnified when dealing with spatial data. Since its size is

greater than that of alphanumeric data, fewer instances of it

will fit in the same amount of streaming data memory as

alphanumeric data. In addition, the reasons for spatial data

becoming invalid may also differ, as we are dealing with data

with multiple dimensions and in specific locations in space.

Referring back to the earlier example, if the number of pests in

an of farmland is no longer considered high, this would render

the region representing it is considered no longer valid.

These issues with spatial data streams also introduce challenges

with strategies that operate on the data. One operation that

needs to be reconsidered in in the context of spatial data

streams is the spatial join [4]. Given two object sets X={x1,

mailto:wendy.osborn@uleth.ca

W. Osborn / Journal of Ubiquitous Systems & Pervasive Networks, 2 (2021) pp.33-41

34

x2…xm} and Y={y1, y2…yn}, a spatial join matches pairs of

objects between the sets (i.e., xi, yi) using a spatial predicate,

such as overlap, containment, nearest neighbour, or direction.

However, traditional spatial join processing requires that all

objects are available at the time of the join. However, this may

not be possible for objects that are transmitted continuously on

a spatial data stream. In this situation, each object must be

processed for the spatial join immediately on arrival, as it may

have already been required for the join. In addition, decisions

must be made on: 1) whether to keep this object, as it may be

required for future joining with an object that has not yet

arrived, 2) whether to delete the object later on, if it has been

found to be invalid, and 3) whether to delete one or more

objects in order to make room for new ones that have arrived

[1].

Therefore, new strategies are needed for managing spatial

stream data, as well as for processing operations in light of the

data stream environment. This work focuses on the latter, and

specifically on the adaptation of the spatial join operation for

processing spatial data streams.

Previously proposed strategies that employ spatial joins for

query processing in spatial databases can be classified as

follows: for centralized queries [5],[6],[7],[8],[9],[10], for

distributed queries [11],[12],[13],[14],[15],[16], and for spatial

data stream queries [3],[17].

Significant work has been proposed for both centralized and

distributed query processing. However, we see that limited

work has been proposed for spatial data stream query

processing involving spatial joins. In addition, the limitations

of these two approaches include the repeated spatial join

processing of the same objects, and the requirement that the

containment area (i.e., spatial extent) of all objects generated

by a spatial data stream must be known in advance. It is not

always possible to know this latter requirement – at least not

accurately.

Therefore, to attempt to overcome the limitations of the

previously strategies, two new strategies are proposed for

spatial data stream joining strategies. Both strategies do not

require that the spatial extent from which the spatial data

stream objects are drawn be known in advance, and do not

perform repeated spatial joining of the same two objects. Both

strategies estimate a common spatial extent for all spatial data

streams participating in the spatial join, from the incoming

objects themselves. The first strategy (Sliding Window) uses

an initial sliding window of objects obtained from two spatial

data streams to estimate a common spatial extent. The second

strategy (Incremental) utilizes the first object from both

incoming spatial data streams to create an initial common

spatial extent, and incrementally (and selectively) grows the

common region using more objects from the spatial data

streams as they arrive. The experimental evaluation that was

performed includes a comparison with an existing approach

that uses a pre-determined common spatial extent. The results

show that the Sliding Window strategy significantly

outperforms the Incremental strategy. It also obtains results that

are comparable to the existing approach.

The rest of this paper proceeds as follows. Section 2

summarizes related work in different areas of spatial join

processing. Section 3 presents the background information that

is needed for both proposed strategies. Section 4 presents the

two proposed strategies that attempt to overcome the limitation

of existing strategies. Section 5 presents the methodology and

results of the performance evaluation and comparison. Finally,

Section 6 concludes the paper and presents some future

research directions that arise from this work.

2. Related Work

In this section a summary of previously proposed strategies

that utilize a spatial join for query processing is presented.

Spatial query processing strategies that utilize the spatial join

can be organized as follows:

• for centralized queries [5],[6],[7],[8],[9],[10],

• for distributed queries [11],[12],[13],[14],[15],[16], and

• for queries on spatial data streams [3],[17].

Several strategies for processing spatial joins focus on

partitioning approaches. Patel and Dewitt [5] propose a

partition-based strategy for performing a spatial merge join.

Using the spatial extent for all objects participating in the join,

the authors partition the space into multiple regions before

creating one bucket for each region that contains the objects for

that region. Each bucket is the processed for spatial predicate

matches between objects. Zhou et al. [7] extend the approach

of Patel and Dewitt for a parallel execution environment,

considering both CPU and communication costs. Arge et al. [8]

also propose a partition-based spatial join strategy that also

utilizes plane sweeping. The spatial extent is partitioned

vertically, with each strip processed separately using a plane

sweeping algorithm.

Strategies for processing distributed spatial queries focus on

improving the spatial semijoin approach for handling spatial

joins and applying the new strategy to distributed query

processing. Abel et al. [11] and Tan et al. [12] propose two

strategies to speed up the processing of a semijoin-based spatial

join. The first utilized the leaf-level minimum bounding

rectangles obtained from a spatial index by an R-tree to

represent the spatial attribute, while the second utilized a quad-

tree key representation of the attribute. The authors recommend

the first for a larger spatial attribute and the second for a

smaller one. Karam and Petry [14] extend the first approach of

[11],[12] by considering minimum bounding rectangles from

different levels of an R-tree for the spatial attribute. Kalnis et

al. propose a spatial join strategy where the query site is a

mobile device. Their goal is to reduce the data transmission

cost from two non-cooperating sites by pruning data that will

not be part of the final result before it is transmitted to the

mobile device. Farruque and Osborn [15] also propose two

strategies to improve the processing and data transmission cost

of a semijoin-based spatial join. Both utilize a partition of the

common spatial extent that objects occupy, and also a

representation of the cells that contain objects. Their first

strategy uses the indexes of the partition (i.e., where objects

reside) to represent the spatial attributes, while their second

strategy utilizes a Bloom filter [18] representation of the

partition and where objects are located. Both are applied in a

general distributed spatial query processing strategy. Osborn

and Zaamout [16] propose a general strategy for distributed

spatial join processing that considers multiple sites and

minimizes data transmission costs. Their strategy begins by

identifying the smaller participating relations, before shipping

the spatial attribute from each to a site with a larger relation. A

semi-join-based join is performed on the larger relations, with

the qualifying identifiers shipped back to the sites of the

smaller relations in order to select qualifying tuples. All

qualifying tuples are then sent to a central query site for final

spatial join processing.

Recently, two strategies have been proposed for spatial query

processing on spatial data streams. The progressive spatial join

strategy proposed by Kwon and Li [3] works by joining the

same pair of objects multiple times using different

representations of them, beginning with a minimum bounding

box, and increasing the complexity of the representation for

W. Osborn / Journal of Ubiquitous Systems & Pervasive Networks, 2 (2021) pp.33-41

35

subsequent joins This reduces the cost of the spatial join as

simpler representations are computationally less expensive to

join, and can also prune object pairs that cannot be joined [3].

Osborn [17] proposed several strategies that use a conventional

spatial join, or a bit-array join (i.e., similar to a Bloom join

[18]). All strategies utilize a common region (i.e., common

spatial extent) between the two spatial data streams, in order to

prune objects that would not be part of the spatial join.

Therefore, significant work has taken place for applying spatial

joins in various strategies to centralized and distributed query

processing, with very little work having taken place in applying

spatial joins in stream query processing. In addition, existing

strategies have one or more of the following limitations:

• the assumption that all participating objects are available

for the joins (i.e., an object cannot be transmitted at a later

time and still be considered “current” for the spatial join.

• the repeated spatial join of the same pair of objects.

• the spatial extents of the individual spatial data streams

must be known in advance. It is not always possible to

know this latter requirement – at least not accurately.

Therefore, two new strategies are proposed in this paper that

focus on overcoming these limitations. Both strategies do not

require that the objects be available at the time of the join, and

that the spatial extent from which the spatial data stream

objects are drawn be known in advance. In addition, they do

not perform repeated spatial joining of the same two objects.

Both strategies are proposed in the next section.

3. Background

This section presents the required background for

understanding the proposed work. After introducing the

symbolic notation used in this paper, the terms spatial data

stream system, sliding window, and spatial join are defined.

Finally, the Spatial2 strategy [17] is summarized, which is the

strategy used for comparison in Section 5.

3.1. Symbolic Notation

The following symbols are used throughout this paper:

• S1 and S2 are two spatial data streams which transmit

objects to the spatial data stream server.

• o1 and o2 are the current objects arriving from S1 and S2

respectively.

• E1 and E2 are the spatial extents that contains objects S1

and S2 respectively.

• CR is a common region of space shared by both S1 and

S2. It is composed from the overlap of E1 and E2,

• RS is the result stream (i.e., output stream).

• SW is a sliding window.

• numobj(SW) depicts the size of SW (or, the number of

objects currently in SW).

• oswx, x = 1 to numobj(SW) are the objects that have been

placed in SW from both S1 and S2.

3.2. Data Stream System

Fig. 1 depicts an example data stream system. There are two

input streams, which continuously create and transmit data to a

server, which serves as the stream data manager and processor.

For the work to be proposed here, it is assumed that the server

contains a query processor that processes data immediately on

its arrival. Any generated results from query processing are

transmitted on the result data stream to some other remote

destination [2]. For spatial data streams, all data that is

generated, transmitted, and produced on the server is spatial

data, which is some combination of point and/or object data

that has a location in space.

Fig. 1. Data stream system

Since a limited amount of data that arrives from a data stream

can be stored in stream memory at a time, decisions must be

made concerning which data to store and which to delete.

Several approaches have been proposed for this [1]. One

approach for managing incoming stream data is called a sliding

window. Conceptually, it is a view of a subsequence of the

data at a given time, and after the subsequence is processed,

this view is moved along the sequence to process other

subsequences. In a data stream system, a sliding window can

be seen as a limited size memory that stores incoming stream

data for some finite amount of time. When the sliding window

is full, some data must be removed in order to accommodate

more incoming data from the stream. By definition, a sliding

window uses a first-in-first-out (FIFO) strategy – in other

words, the data that has remained in the sliding window the

longest is chosen for removal. The work proposed here utilizes

the FIFO strategy for object removal. However, this work also

utilizes the least recently used (LRU) strategy. The LRU

strategy determines which objects have not been accessed in

the longest time (e.g., an object for a spatial join) and chooses

these objects for removal. Both strategies are employed to

determine if one approach is superior with respect to keeping

the most needed data in the sliding window at all times.

Traditionally, a data stream is defined as unbounded if the

number of values arriving on the stream was unknown [1]. For

a spatial data stream, the term unbounded requires an

additional component. In addition to the number of objects

being unknown, the region of space (i.e., spatial extent) that the

objects are drawn from can also be unknown. Therefore, a

spatial data stream is unbounded if the number of objects is

unknown, and/or its spatial extent is unknown.

3.3. Spatial Join

The spatial join [4] matches pairs of objects from spatial object

sets, S1 and S2 based on the outcomes of some spatial predicate

such as overlap, containment, direction, etc. The following

assumptions are made for this work. First, the strategies

proposed here assume the use of the overlap predicate in the

spatial join. Second, this work also assumes that the nested-

loop join is utilized for joining portions of S1 and S2. Third, the

strategies assume that a vector (i.e., geometric) representation

of polygons is utilized – therefore, a polygon is a sequence of

connected points. Finally, it is assumed that all objects are in

rectangular form only, as testing the overlap of any arbitrarily

shaped objects is costly. However, the strategies proposed in

this paper will work for any non-directional predicates, and

spatial objects of any shape.

W. Osborn / Journal of Ubiquitous Systems & Pervasive Networks, 2 (2021) pp.33-41

36

3.2. The Spatial2 strategy

The Spatial2 [17] strategy will serve as the comparison strategy

in the evaluation versus the new strategies (Section 5). Spatial2

achieved high accuracy over the strategy in [3] when compared

using spatial data streams with smaller numbers of objects [17].

Given two spatial data streams S1 and S2, the strategy processes

the object inputs o1 and o2 as they arrive using the spatial join.

Sliding window SW stores the most recent set of objects oswx

that have arrived from both streams and were chosen to be

maintained. To decide which objects to keep, Spatial2 utilizes

the common spatial extent (i.e., common region CR) to

determine the region of space that contains objects from both

S1 and S2.

Fig. 2. Overlap of two overall regions

Fig. 2 depicts an example of a common region. Given spatial

extents E1 and E2 which correspond to streams S1 and S2

respectively, the grey region is the spatial extent (i.e., common

region CR) that potentially contains objects generated for both

streams S1 and S2. Spatial2 evaluates arriving objects o1 and o2

for overlap with CR, to determine: 1) if there is the potential for

overlap with other objects, and 2) whether the object should be

stored in SW. The strategy is carried out in the following

manner [17].

1. Spatial extents E1 and E2 are transmitted to spatial stream

query processor for calculating common region CR.

2. Spatial data streams S1 and S2 transmit objects o1 and o2

respectively to the data stream processor. If required, at

most two objects must be removed from SW if no room

exists for the new objects. Spatial2 utilizes the FIFO

strategy for object removal.

3. Object o1 is tested for overlap with CR. If overlap exists,

o1 is first added to SW, and then evaluated for overlap

with all other objects oswx in SW that were transmitted on

S2. Any overlapping pairs that are found, are transmitted

on the result stream RS.

4. Object o2 is tested for overlap with CR. If overlap exists,

o2 is first added to SW, and then evaluated for overlap

with all other objects oswx in SW that were transmitted on

S1. Any overlapping pairs that are found, are transmitted

on the result stream RS.

5. This is repeated from Step 2 while S1 and S2 continue

transmitting objects.

4. Strategies for Unbounded Data Streams

In this section, two nested-loop strategies for joining two

spatial data streams are proposed, called Sliding Window and

Incremental. Both strategies do not require the existence of pre-

determined spatial extents, as these may not be available, or

require significantly overestimation in order to be applied to

existing strategies. Both Sliding Window and Incremental are

proposed below.

4.1. Sliding window strategy

The Sliding Window strategy creates a common region CR by

estimating spatial extents E1 and E2 for the spatial data streams

S1 and S2 respectively. These are estimated using the first

numobj(SW)/2 objects from each stream. The CR is created by

performing the overlap of E1 and E2. Then, subsequent objects

o1 and o2 that are transmitted from S1 and S2 are tested for

overlap with CR. Only those objects that overlap with CR are

saved in SW for future joins. The strategy proceeds as follows:

1. The first numobj(SW)/2 objects from each of S1 and S2 are

obtained. At the same time, any existing spatial joins are

processed:

a. Objects o1 and o2 are received from streams S1 and S2

respectively, and are placed on SW. If SW is full, either

FIFO or LRU selection take places to remove existing

objects.

b. Object o1 is tested for overlap with all other objects oswx

in SW received from S2. Any pair of objects that overlap

are transmitted on RS.

c. Object o2 is tested for overlap with all other objects oswx

in SW received from S1. Any pair of objects that overlap

are transmitted on RS.

2. Next, E1, E2 and CR are created:

a. E1 is formed by enclosing objects oswx in SW that were

transmitted from S1.

b. E2 is formed by enclosing objects oswx in SW and were

transmitted from S2.

c. Finally, CR is created by performing the overlap of E1

and E2.

3. At this point, the Spatial2 strategy is utilized to process

joins with subsequent incoming objects from S1 and S2, and

to determine which objects are to be added to and removed

from SW.

4.2. Incremental strategy

The Incremental Strategy creates CR gradually as objects

o1 and o2 continue to arrive from S1 and S2. An initial CR is

created by encompassing the first o1 and o2 with a spatial

extent. Then, for all subsequent o1 and o2, if o1 and/or o2

overlap CR, then CR is increased the accommodate the new

object(s), and the objects are added to SW (with space being

made in SW for them if required). Spatial joins with other

objects in SW are also processed at this point. The strategy

proceeds as follows:

1. CR is created initially by creating a spatial extent that

encompasses o1 and o2.

2. Then, all subsequent objects o1 and o2 are processed as

they arrive from S1 and S2:

a. Object o1 is tested for overlap with the CR. If

successful, CR is increased to accommodate o1, and

o1 is added to SW. In addition, o1 is evaluated for

overlap with all other objects oswx in SW that were

transmitted from S2. Any pair that have a positive

overlap result is transmitted on the result stream RS.

b. Object o2 is tested for overlap with the CR. If

successful, CR is increased to accommodate o2, and

o2 is added to SW. In addition, o2 is evaluated for

overlap with all other objects oswx in SW that were

W. Osborn / Journal of Ubiquitous Systems & Pervasive Networks, 2 (2021) pp.33-41

37

transmitted from S1. Any pair that have a positive

overlap result is transmitted on the result stream RS.

3. If required, if SW does not have enough room for o1 and

o2, then one or two objects are chosen for removal.

5. Evaluation

In this section, the empirical evaluation of the Sliding Window

and Incremental strategies is presented. Both strategies will be

compared against the Spatial2 strategy [17]. The methodology

is presented first, followed by the presentation of the results of

the evaluation.

5.1. Methodology

The simulated data streaming environment set up for all

experiments contains:

• two simulated spatial data streams, and

• a central stream query processor with one sliding window.

The sliding window manages a portion of both spatial data

streams. It also utilizes the first-in-first-out (FIFO) and least

recently used (LRU) object removal when space was needed in

the sliding window for new incoming objects.

Both strategies are implemented in C++ on the Linux Centos 7

operating system. For evaluation purposes, several spatial data

streams were simulated by using a sequence of 10x10

rectangles. This approach was used so that the distribution of

the data, the size of the spatial extent covered by a spatial data

stream, and the overlap between spatial extents, could be

controlled. Altogether, 20 simulated spatial data streams were

used in pairs for spatial joins and grouped into two evaluation

sets. The first used pairs containing 2000, 4000, 6000, 8000

and 10000 rectangles, respective. The second used pairs

containing 20000, 40000, 60000, 80000 and 100000 rectangles,

respectively. Each set of n rectangles were created from a

spatial extent of dimensions:

(sqrt(n) * 10) x (sqrt(n) * 10)

For example, a 310x310 spatial extent was used to create the

1000-rectangle sets. In addition, between pairs of rectangle

sets, the spatial extents had a 25% overlap between them.

For all strategies, two sets of tests were carried out that varied:

1) the number of objects sent through each spatial data stream,

and 2) the size of the sliding window. For each set of tests:

• Varying the number of objects. Overall, 20 tests were

carried out, which can be categorized into five groups:

o 2000x2000, 4000x4000, 6000x6000, 8000x8000 and

10000x10000 spatial object stream pairs, with sliding

window size 16000 bytes (i.e., 1000 rectangles),

o 20000x20000, 40000x40000, 60000x60000,

80000x80000 and 100000x100000 spatial object

stream pairs, with sliding window size 16000 bytes

(i.e., 1000 rectangles),

o 2000x2000, 4000x4000, 6000x6000, 8000x8000 and

10000x10000 spatial object stream pairs, with sliding

window size 160000 bytes (i.e., 10000 rectangles),

o 20000x20000, 40000x40000, 60000x60000,

80000x80000 and 100000x100000 spatial object

stream pairs, with sliding window size 160000 bytes

(i.e., 10000 rectangles),
• Varying the window size. Overall, 16 tests were carried

out, which can be categorized into five groups:

o 8000, 16000, 24000 and 32000 bytes (i.e., 500, 1000,

1500 and 2000 rectangles, respectively), using the

4000x4000 spatial object stream pair.

o 8000, 16000, 24000 and 32000 bytes (i.e., 500, 1000,

1500 and 2000 rectangles, respectively), using the

40000x40000 spatial object stream pair.

o 80000, 160000, 240000 and 320000 bytes (i.e., 5000,

10000, 15000 and 20000 rectangles, respectively),

using the 4000x4000 spatial object stream pair.

o 80000, 160000, 240000 and 320000 bytes (i.e., 5000,

10000, 15000 and 20000 rectangles, respectively),

using the 40000x40000 spatial object stream pair.

For all tests, two performance factors were recorded: the CPU

time (in milliseconds) over the entire join at the stream query

processor, and the number of joined tuples in the final result

stream. Accuracy was calculated from the latter value using

number of tuples in the overall join result (i.e., assuming a full

spatial join with no sliding window) that was also determined

in each strategy.

5.2. Results

This section presents the results of the evaluation. The results

for the varying spatial data stream sizes are presented first,

followed by the results for the varying sliding window sizes. In

all charts (Figs. 3-18), the following is represented: CR is the

outcome of the Spatial2 strategy [17], SW FIFO is the outcome

of the Sliding Window strategy where a FIFO strategy is

utilized for object removal from SW, Inc FIFO represents the

outcome of the Incremental strategy where a FIFO strategy is

utilized for object removal from SW, SW LRU represents the

outcome of the Sliding Window strategy where a LRU strategy

is utilized for object removal from SW, and Inc LRU represents

the outcome of the Incremental strategy where a LRU strategy

is utilized for object removal from SW.

5.2.1. Varying Number of Objects

Figs. 3 to 6 depict the accuracy results for varying the size of

the spatial data streams while using sliding windows of 16,000

bytes and 160,000 bytes respectively. As we can see, results

show that overall, there is a significant decrease in accuracy as

the number of objects being transmitted from the data streams

increase. In addition, with respect to accuracy, the Sliding

Window strategy performs significantly better than the

Incremental Strategy. Finally, we also see there is little to no

difference between the use of FIFO and LRU for selecting

which objects to remove from the sliding window.

In Figs 3 and 4, the accuracy of the Sliding Window strategy is

high and almost equal to that achieved by the Spatial2 strategy,

and for smaller data sizes is at least 80%. This is significantly

better than the Incremental strategy, which at best only

achieves a 60% accuracy. Both strategies, however, have a

significant decrease in accuracy as the number of objects

increase, with less than 20% in the larger stream sizes. With an

increase in the sliding window size, which is shown in Figs. 5

and 6, improvements - significant ones early on, and more

modest one with larger stream sizes - are achieved by the

Sliding Window strategy. However, again it must be noted that

the Sliding Window strategy performs almost as well as the

Spatial2 strategy. Therefore, having a pre-determined spatial

extent from which objects are streamed from is not necessary,

and comparable results are achieved.

Figs. 7 to 10 depict the running time results for varying the size

of the spatial data streams while using sliding windows of

16,000 bytes and 160,000 bytes respectively. As we can see,

W. Osborn / Journal of Ubiquitous Systems & Pervasive Networks, 2 (2021) pp.33-41

38

Fig. 3. Up to 10000x10000 objects – window size 16K (acc)

Fig. 4. Up to 100000x100000 objects – window size 16K (acc)

Fig. 5. Up to 10000x10000 objects – window size 160K (acc)

Fig. 6. Up to 100000x100000 objects – window size 160K (acc)

Fig. 7. Up to 10000x10000 objects – window size 16K (time)

Fig. 8. Up to 100000x100000 objects – window size 16K (time)

Fig. 9. Up to 10000x10000 objects – window size 160K (time)

Fig. 10. Up to 100000x100000 objects – window size 160K (time)

W. Osborn / Journal of Ubiquitous Systems & Pervasive Networks, 2 (2021) pp.33-41

39

Fig. 11. Up to 32K, 4000x4000 objects (acc)

Fig. 12. Up to 32K, 40000x40000 objects (acc)

Fig. 13. Up to 320K, 4000x4000 objects (acc)

Fig. 14. Up to 320K, 40000x40000 objects (acc)

Fig. 15. Up to 32K, 4000x4000 objects (time)

Fig. 16. Up to 32K, 40000x40000 objects (time)

Fig. 17. Up to 320K, 4000x4000 objects (time)

Fig. 18. Up to 320K, 40000x40000 objects (time)

W. Osborn / Journal of Ubiquitous Systems & Pervasive Networks, 2 (2021) pp.33-41

40

results show a significant increase in running time as the size of

the data streams increase. In addition, the Incremental

strategies – both with FIFO and LRU object removal - have an

initial lower running time over the other approaches, but

ultimately produce a higher running time as the number of

objects increase.

5.2.2. Varying Sliding Window Size

Figs. 11 to 14 depicts the accuracy results for varying the size

of the sliding window with spatial join sizes of 4000x4000 and

40000x40000 respectively. From the results, we see that for

larger data sizes, the accuracy does improve as the size of the

sliding window increases, but overall, the size of the dataset

requires a larger sliding window size in order to achieve better

performance. We also see that there is little to no difference

between the use of FIFO and LRU for selecting which objects

to remove from the sliding window. We see similar trends to

those found for varying the number of objects transmitted from

the data streams. Specifically, we see that the Sliding Window

Approach achieves accuracies that are similar to those obtained

by the Spatial2 strategy, and that the Incremental strategy

performs poorly. The only exception is for the larger sliding

windows and the 4000x4000 spatial stream join, where the

Incremental strategy does achieve 80% accuracy.

Figs. 15 to 18 depict the accuracy results for varying the sliding

window size, with spatial join sizes of 4000x4000 and

40000x40000 respectively. Results show that the running time

increases as the size of the sliding window increases.

We also observe the same trends as above - that the Sliding

Window strategy has higher running times than the Incremental

strategy for the smaller sliding window sizes, but the opposite

occurs as both the sliding window size and the size of the

spatial data stream increase.

5.3. Assumptions and Threats to Validity

This section presents assumptions and potential threats to the

validity of the experimental results.

The objects used for all experiments are squares in which all

vertices are double-precision floating point numbers. No

challenges exist here, as long as non-numeric data is not used

to represent the vertices. In addition, although the identifiers

associated with each object are integers, they are represented as

strings. Therefore, any other representation of the identifier

should not cause problems with program execution (although

this was not specifically verified). However, any non-

rectangular representation of objects will affect these results, as

the implementation of the strategies only test for overlap of

rectangles.

In a sequence of objects, all objects are unique with respect to

location (i.e., no two objects have the same vertices). Although

having two or more completely identical objects in a stream is

very unlikely, the possibility is higher here as all objects have

an identical representation. In addition, although the execution

of the problem is not affected by having duplicate objects, the

results obtained here may vary if this situation existed.

Both streams send objects to the server at the exact rate and

time. Any changes to this will affect the results obtained here.

Finally, the strategies consider heuristically both the validity of

the input with respect to its potential for participation in a join,

and whether an object will be required later on. The

experiments results may differ if the objects arrive in a

different order. In addition, the strategies assume that all

outputs (i.e., spatially joined pairs that are transmitted on an

output stream) are valid forever. Consideration of invalidity of

outputs will affect the results obtained here.

6. Conclusion

In this paper, two strategies for spatial join processing in spatial

data streams – Sliding Window and Incremental – are

proposed. The goals of both strategies are: 1) to eliminate the

need for up-front spatial extents from the participating spatial

data streams, by estimating the common spatial extent shared

by the streams, and 2) to prune objects that have little or no

chance to participate in the spatial join. The first strategy,

Sliding Window, estimates the common region by using the

first numobj(SW) objects that arrive from the spatial data

streams. The second strategy, Incremental, forms an initial

common region from the first objects - one from each stream -

that arrive, and grow the common region incrementally with

subsequent arriving objects that overlap the current common

region.

An experimental evaluation and comparison versus the

Spatial2 approach [17] that uses pre-determined spatial extents

show that the Sliding Window approach performs significantly

better than the Incremental approach and, in terms of accuracy,

almost equal to the Spatial2 approach.

6.1. Future Work

Future research directions include the following. First, spatial

data streams with differing arrival times must be considered, as

currently both are transmitting objects at the exact same rate

and time. In addition, other strategies for estimating the spatial

extent of an unbounded spatial data stream must be considered,

as certain accuracies – especially for larger spatial data streams

and smaller sliding windows – are still too low. Finally, the

strategies need to be evaluated with larger spatial data streams,

and also against the original progressive join algorithm

proposed by Kwon and Li [3].

References

[1] Babu S, Widom J. Continuous Queries over Data

Streams. SIGMOD Record 2001;30:109-120.
https://doi.org/10.1145/603867.603884

[2] Han J, Kamber M, Pei J. Data Mining: Concepts and

Techniques. Massachusettes: Morgan Kaufmann, 2011.

[3] Kwon O, Li KJ. Progressive spatial join for polygon data

stream. Proceedings of the 19th ACM SIGSPATIAL

International Conference on Advances in Geographic

Information Systems. Chicago, IL, 2011.
https://doi.org/10.1145/2093973.2094030

[4] Shekhar S, Chawla S. Spatial databases: a tour. New

Jersey: Prentice Hall, 2003.

[5] Patel J, Dewitt D. Partition based spatial-merge join.

Proceedings of the 1996 ACM Sigmod International

Conference on Management of Data. Montreal, QC,

1996. https://doi.org/10.1145/233269.233338

[6] Huang YW, Jing N, Rundensteiner E. Integerated query

processing strategies for spatial path queries. Proceedings

of the 13th IEEE International Conference on Data

Engineering. Birmingham, UK, 1997.

https://doi.org/10.1145/603867.603884
https://doi.org/10.1145/2093973.2094030
https://doi.org/10.1145/233269.233338

W. Osborn / Journal of Ubiquitous Systems & Pervasive Networks, 2 (2021) pp.33-41

41

[7] Zhou X, Abel D, Truffet D. Data partitioning for parallel

spatial join processing. Geoinformatica 1998;2:175-204.
https://doi.org/10.1023/A:1009755931056

[8] Arge L, Procopiuc O, Ramaswamy S, Suel T, Vitter J.

Scalable sweeping-based spatial join. Proceedings of the

24th International Conference of Very Large Databases.

New York City, NY, 1998.

[9] Jacox E, Samet H. Spatial join techniques. ACM

Transactions on Database Systems 2007;32:43 pages.

https://doi.org/10.1145/1206049.1206056

[10] Zhong Y, Han J, Zhang T, Li Z, Fang J, Chen G.

Towards parallel spatial query processing for big spatial

data. Proceedings of the 26th IEEE International Parallel

and Distributed Processing Symposium Workshops.

Shanghai, China, 2012.

https://doi.org/10.1109/IPDPSW.2012.245

[11] Abel D, Ooi B, Tan KL, Power R, Yu J. Spatial join

strategies in distributed spatial dbms. Proceedings of the

45th International Symposium on Advances in Spatial

Databases. Portland, ME, 1995.

https://doi.org/10.1007/3-540-60159-7_21

[12] Tan KL, Ooi B, Abel D. Exploiting spatial indexes for

semijoin-based join processing in distributed spatial

databases. IEEE Transactions on Knowledge and Data

Enginnering 2000;12:920-937.

https://doi.org/10.1109/69.895802

[13] Kalnis P, Mamoulis N, Bakiras S, Li X. Ad-hoc

distributed spatial join on mobile devices. Proceedings of

the 20th IEEE International Parallel and Distributed

Processing Symposium. Rhodes Island, Greece, 2006.
https://doi.org/10.1109/IPDPS.2006.1639266

[14] Karam O, Petry F. Optimizing distributed spatial joins

using R-trees. Proceedings of the 43rd ACM Southeast

Conference. Kennesaw, GA, 2005.

https://doi.org/10.1145/1167350.1167417

[15] Farruque N, Osborn W. Efficient distributed spatial

semijoins and their application in multiple-site queries.

Proceedings of the 28th IEEE International Conference on

Advanced Information Networking and Applications.

Victoria, BC, 2014.
https://doi.org/10.1109/AINA.2014.132

[16] Osborn W, Zaamout S. Using spatial semijoins over

multiple sites in distributed spatial query processing.

Canadian Journal of Electrical and Computer

Engineering 2016;39:71-81.
https://doi.org/10.1109/CJECE.2015.2463753

[17] Osborn W. Exploring bit arrays for join processing in

spatial data streams. Proceedings of the 22nd International

Conference on Network-based Information Systems.

Oita, Japan, 2019. https://doi.org/10.1007/978-3-030-

29029-0_7

[18] Bloom BH. Space/time trade-offs in hash coding with

allowable errors. Communications of the ACM

1970;13:422-426. https://doi.org/10.1145/362686.362692

https://doi.org/10.1023/A:1009755931056
https://doi.org/10.1145/1206049.1206056
https://doi.org/10.1109/IPDPSW.2012.245
https://doi.org/10.1007/3-540-60159-7_21
https://doi.org/10.1109/69.895802
https://doi.org/10.1109/IPDPS.2006.1639266
https://doi.org/10.1145/1167350.1167417
https://doi.org/10.1109/AINA.2014.132
https://doi.org/10.1109/CJECE.2015.2463753
https://doi.org/10.1007/978-3-030-29029-0_7
https://doi.org/10.1007/978-3-030-29029-0_7
https://doi.org/10.1145/362686.362692

