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Abstract 

Landslides are phenomena that cause significant human and economic losses. Researchers have investigated the prediction 

of high landslides susceptibility with various methodologies based upon statistical and mathematical models, in addition 

to artificial intelligence tools. These methodologies allow to determine the areas that could present a serious risk of 

landslides. Monitoring these risky areas is particularly important for developing an Early Warning Systems (EWS). As 

matter of fact, the variety of landslides’ types make their monitoring a sophisticated task to accomplish. Indeed, each 

landslide area has its own specificities and potential triggering factors; therefore, there is no single device that can monitor 

all types of landslides. Consequently, Wireless Sensor Networks (WSN) combined with Internet of Things (IoT) allow to 

set up large-scale data acquisition systems. In addition, recent advances in Artificial Intelligence (AI) and Federated 

Learning (FL) allow to develop performant algorithms to analyze this data and predict early landslides events at edge level 

(on gateways). These algorithms are trained in this case at fog level on specific hardware. The novelty of the work proposed 

in this paper is the integration of Federated Learning based on Fog-Edge approaches to continuously improve prediction 

models. 

Keywords: Landslides Susceptibility, IoT, Artificial Intelligence, Early Warning System, Landslides Monitoring, Edge AI, 

Edge IoT 
 

  

1. Introduction 

Natural disasters are catastrophic events disrupting the ordinary 

process of Earth, causing millions of life losses and costing 

billions of economic damages. Among these phenomena, 

landslides are one of the deadliest events.  They occur when the 

mechanics of the slope movements deteriorate; therefore, the 

ground transforms into a liquid and flows rapidly and 

unexpectedly down a steep slope. Furthermore, climate changes 

intrinsically impact slope instabilities, which increase the 

landslides’ occurrence. The influence of climate changes and 

landslides have been deeply investigated by our predecessors 

[27]. Indeed, climate, “its changes”, and landslides operate 

differently and partially on overlapping scales.  

 

Subsequently, there are three main compounds of climate 

changes that trigger landslides, which are: (1) precipitation,  

(2) temperature, and (3) weathering. Firstly, changes in 

precipitation regime can cause erosion and effect land use, 

which directly impact the equilibrium of vegetation and 

therefore the slope stability. Secondly, changes in the air 

temperature influence ice and avalanches, and have indirect 

impact on rock falls (because of the creation of new fractures 

within the rocks), and on deep-seated landslides (due to changes 

in the hydrological cycle). Thirdly, variation in weathering have 

indirect effect on landslides. A study results of [28] stated that 

western weather trends caused landslides from autumn to spring 

and southern patterns were responsible for more landslides in the 

summer. Hence, the relationship between climate changes and 

landslides remains complicated to assess and pose serious 

dilemma to decisions makers and politicians. 
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For these reasons, it is challenging to detect all areas subject to 

landslides and to determine when and where they will occur in 

the future. Knowing areas likely to cause a landslide issue plays 

a crucial role in terms of regional planning, preservation of 

human lives, and socio-economic environment. To overcome 

this problem of landslides susceptibility assessment, prediction, 

and monitoring, the scientific community used different 

approaches (statistics, deterministic, mathematical, machine 

learning…etc.). Nevertheless, these methods depend strongly to 

the availability of data and intrinsically on their accuracy. For a 

general approach at various scales and for different types of 

landslides, these data are often unavailable, but when they are, 

they present in most of the time insufficient precision to be able 

to locate the studied phenomenon. 

 

Artificial Intelligence is currently investigated by many research 

teams to predict displacement of landslides. In explanation, they 

implement their algorithms on the cloud to train them easily with 

designated hardware solutions. These researches have proven 

that artificial intelligence and machine learning algorithms can 

provide more accurate prediction than classical mathematic and 

statistic approaches. Nevertheless, the use of AI requires a large 

database to train algorithms of various kind of landslides to get 

more robust algorithm. 

 

Nowadays, recent advances in Edge AI provide ability to exploit 

the power of artificial intelligence at edge level to preprocess 

data before their transfer to the cloud, in order to train efficient 

landslides prediction algorithms. Moreover, AI training on the 

cloud is not adapted for continuous learning, geographical 

dispersed location, and privacy-sensitive data [15]. Since 

landslides monitoring is a geoscience matter, means sensing 

nodes are geographically distributed, and Edge AI computing is 

well suited to better monitor landslides constraints. In this paper, 

we investigate the use of AI based on deep neural networks 

methods to better consider the dynamic nature of landslides and 

more precisely predict their displacements [29]. 

The present article will be structured as follow: In section 2, we 

provide an overview on previous works, summarize landslides 

susceptibility methods, monitoring factors in early warning 

systems, data processing at edge level, and finally using artificial 

intelligence to predict landslides. In section 3, we describe our 

architecture using a fog micro-cluster, edge gateways on what is 

deployed as the federated learning algorithms. In section 4, we 

draw our conclusion. Finally, in section 5, we pave the way to 

future research directions in section 5. 

2. Related Works 

In this section, we provide a summary of our main contributions 

in some of our previous works. Then, we resume the main 

findings related to this paper. 

2.1. Previous works 

 

In our previous works, we described the basis of our Wireless 

Sensor Network (WSN) in [2] and then developed the gateway 

used to process data near end-users and a multi-agent system [1]. 

We initiated, an edge AI-IoT architecture in [36-37] and 

described an edge gateway in [38]. In this paper, we propose to 

evolve these previous works to integrate the federated learning 

at fog level to continuously improve the prediction accuracy.  

2.2. Landslides Susceptibility Assessment  

 

Landslides Susceptibility Assessment (LSA) is a useful tool to 

predict where landslides may have a higher probability to occur 

under certain conditions. Over the past decade most researchers 

in LSA emphasized the use of statistical methods using GIS 

technologies such as Logistic Regression [29], Weights of 

Evidence [30], Frequency Ratio [31], etc. Other authors used 

mathematical approaches to assess landslides susceptibility like 

Particle Swarm Optimization [12] and Support Vector Machine 

[9]. Moreover, there are several machines learning techniques 

that are widely used for landslide spatial prediction such as 

Decision Tree and Random Forest [6]. Recently, some 

investigations were conducted to predict landslides zonation by 

means of Artificial Neural and Network Fuzzy Logic [11,13]. In 

Table 1, we provide an overview about different susceptibility 

methods used in the literature. The amount of papers published, 

these last years, show that Logistic Regression and Frequency 

Ratio methods are the most used [13].   

 
Table 1. Classification of landslides susceptibility evaluation 

methods.  

Category Method Reference 

Statistical Logistic Regression (LR) [6,7,11] 

Weights of Evidence (WoE) [6] 

Bivariate Statistics (BS) [7] 

Frequency Ratio (FR) [6,7] 

Kernel Logistic Regression 

(KLR) 

[9] 

General Linear Models [8] 

Evidential belief function (EBF) [13] 

Conditional Probability [13] 

Information Value [13] 

Factor Ratio [13] 

Mathematical  Particle Swarm Optimization 

(PSO) 

[12] 

Support Vector Machine (SVM) [9,10,11] 

Decision-aid Decision Tree (DT) [6] 

Multi Criteria Decision Making 
(MCDM) 

[13] 

Analytical Hierarchy Process 

(AHP) 

[7] 

Weighted Linear Combination 
(WLC) 

[13] 

Certainty Factor (CF) [13] 

Machine 

Learning 

Random Forest (RF) [8] 

Classification and Regression 
Tree (CRT) 

[8] 

Artificial 

Intelligence 

Artificial Neural Network 

(ANN) 

[6,9,11] 

Fuzzy Logic (FL) [13] 

Adaptive Network-Based Fuzzy 
Inference system (ANFIS) 

[13] 

Combination of 

methods (i.e.) 

Logistic Model Tree (LMT) [9] 

Boosted Regression Tree (BRT) [8] 

PSO-ANN [12] 

 Bivariate (FR, WoE) - AFNIS [14] 

 

Traditional statistical models assume appropriate structural ones 

and then focus on parameterizing them. These technics are 

widely used for analyzing natural hazards such as landslides. We 

can note that the classification of landslide conditioning factor 

in traditional statistical models is a key point that affects the 

quality of landslide susceptibility map. In contrast, machine 

learning techniques can provide powerful data driven tool, by 

using algorithms allowing to learn the relationship between a 

landslide occurrence and landslide related predictors. However, 

a comparative study of landslide susceptibility maps produced 

by all the categories of the aforementioned methods in Table 1 

(statistical, mathematical, decision-aid, machine learning…etc.) 

for the same study area and using the same controlling 
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parameters, has not been commonly encountered in the 

literature. For this reason, a comparison among these relatively 

new approaches is needed to estimate the spatial landslide 

susceptibility in order to select the best model for regional 

analysis while taking into account the type of landslides as well 

as the geomorphological and geological setting of the area being 

studied. The choice of an adapted susceptibility method to local 

specificities is crucial for a better monitoring.  

2.3. Early Warning Systems 

We have inventoried early warning systems in our previous 

work. Interested reader can find more details in Table 1 and 

more comments in [2]. The main monitoring factors used for the 

most familiar Early Warning Systems are summarized in Table 

2. The analysis of this table shows that the majority of monitored 

factor is the rainfall and its derived ones such as infiltration, 

runoff, run on, and soil moisture, etc. 

This major parameter is sometimes associated with earthquake, 

slope stability, slope angle, or soil wetness. 

While other systems use strain evolution, tilt and moisture, or 

displacement changes.  

 
Table 2. Monitored factors in early monitoring systems. 

Monitored Factors Reference 

Rainfall i.e. [16-17] 

Rainfall threshold / Slope stability i.e. [18] 

Rainfall / Earthquake i.e. [19] 

Rainfall / Evaporation i.e. [20] 

Strain Evolution i.e. [21] 

Tilting angle of slope i.e. [22] 

Rainfall / Snowmelt i.e. [23] 

Tilt and Moisture i.e. [24] 

Displacement Changes i.e. [25] 

Rainfall Severity and Soil Wetness i.e. [26] 

2.4. Data processing 
 

Early Warning System must process data with low latency and 

react as quickly as possible after the detection of a pattern of 

landslide triggering. In the literature, we can synthetize different 

architectural proposition to process data in warning systems. 

Abdelaziz et al. [5] have proposed an architecture model for fog 

computing based on a middleware that abstracts the underlying 

devices and unifies sensed data, and operational layer to target 

service presentation, management, and transformation. The 

proposed architecture has been applied to a flood-warning 

system. The authors of [3] have suggested a Fog-based 

architecture that implements various algorithms aiming to 

schedule tasks of time-sensitive and time-non-sensitive 

applications with different load balancing policies. This 

architecture includes four main components: Gateways, the Fog 

Broker, the cluster of Fog nodes, and applications. Edge 

gateways ensure the interoperability between sensors protocols, 

received, aggregated, and preprocessed data transmitted by IoT 

sensors and devices before their transmission to other tiers. The 

Fog Broker selects nodes according to the requirement of each 

application such as: latency and response time throughout 

processing. Fog cluster supports executing task in containers or 

virtual machines managed by orchestration framework. Load 

balancing policies can also be used to share the load between 

virtual machines. On the other side, Fog nodes composing the 

fog cluster provide storage and computing resources to edge 

devices. Finally, they propose a task scheduler which organizes 

all tasks in the fog cluster. 

2.5. Neural Networks to predict landslides’ displacement 

 

Many authors have implemented Neural Networks to predict 

landslides’ displacement or triggering. We summarize few of 

these contributions which show convincing results. 

Xie et al. [32] demonstrated that Long Short-Term Series with 

geological conditions, rainfall intensity, and human activities as 

input factors allow to obtain a better dynamic prediction of 

displacement than other models.  

Zhu et al. [33] developed a multifactor hybrid model with two 

parts: Least Squares Support Vector Machines (LSSVM) and 

Double Exponential Smoothing (DES). The model decomposes 

the one-step ahead in three components: periodic dynamic 

behavior, trend that represent the geological conditions and, 

random measuring noise. LSSVM allow to estimate periodic 

term, while DES calculates the trend component.  

Chen et al. [34] evaluated an approach based on Multi Genetic 

Programming (MGP) by using Separable Functional Network 

(SFN). However, this method depends of the choice of suitable 

parameters for Multi-Gene Genetic Programming (MGGP) and 

the selection of an appropriate structure of Functional Networks 

(FNs). 

Zhou et al. [35] proposed to combine the Wavelet Transform 

(WT) and Particle Swarm Optimization Kernel Extreme 

Learning Machine (PSO-KELM) to evaluate landslides 

displacements. The total displacement is the sum of three 

component as in [33]: trend, displacement, and noise. 

3. Early Warning System 

In this paper, we propose an adaptable and distributed 

monitoring system based on an AI-IoT Fog-Edge architecture. 

The goal of this architecture is to ensure a short delay of 

treatment with low latency close to users.  

This property is particularly important in the context of early 

warning systems where processing delays and response time are 

crucial. 

Moreover, this architecture allows us also to distribute data 

preprocessing at gateway level and training at fog level. Both 

sensors and weather station monitor an area with a high 

susceptibility level and transmit their data to a common gateway. 

This data is cleaned and stored at the gateway level for a limited 

time before their transfer to the micro cluster at Fog Level (See 

Fig. 1).  

 

 
Fig. 1. Architecture of our early warning system 

 

 

3.1. Fog micro-cluster 
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The intermediary computing units located between the end 

device and the cloud data center are called fog computing nodes. 

The fog is composed of all equipment placed between sensors 

and the cloud such as switch, routers, set-top boxes, and IoT 

gateways [15].  

 

A micro-cluster is composed of nodes offering better 

performances thanks to more important capabilities in term of 

processing, storage, and network than devices and gateways. 

Hence, the micro-cluster is located at fog level with its 

capabilities that help us to achieve various processing tasks 

without having to undergo significant latency times while 

transferring data to the cloud. The Fog micro cluster provides an 

interesting settlement between processing capacity and latency. 

Its characteristics and operation will be detailed in the next 

section. 

 

3.1.1. The micro-cluster 

 

Fog micro-clusters are affordable, easily replicable and 

extendable, energy efficient and specific to a geographic area 

[40].  In our architecture, the micro-cluster plays the role of the 

cloud with a better latency. The micro-cluster is particularly 

interesting to Landslide Early Warning System to have specific 

resources dedicated to training AI models near to the sensors and 

in order to avoid having to transfer data to the cloud to train 

models. 

 

The Fog-micro cluster that we propose to use in this paper is 

composed of an association of computing nodes (Raspberry Pi 

4B 8Gb) and AI Nodes (Nvidia Jetson Xavier NX). A cluster 

File System is used to share data between nodes. It is configured 

in Distributed Volumes based on erasure code that distribute 

striped encoded data of files across multiple brick in the volume. 

Moreover, GlusterFS [4] has already been implemented in a fog 

context in [40] and tested in conjunction with Docker in [39].  

 

In our configuration (Fig. 2), each Raspberry Pi is equipped of a 

500 Gb SSD except the master node equipped of 1 To SSD 

connected with a SATA III – USB 3 adaptor. SSD drives of 

computing nodes are partitioned as follow: 100 Gb for OS in 

ext4, 400 Gb are reserved for the file system Gluster. The master 

node SSD also contains a supplementary partition of 500 Gb in 

the ext 4 filesystem, containing Docker images stored for the 

local Docker registry. All Raspberry Pi 4 are configured to boot 

on SSD. Fig. 3 presents the reading speed obtained with SD 

card, SSD USB3, and SSD NVMe M.2 on Jetson Xavier NX. 

 

 
 

Fig. 2. Fog micro-cluster 

 

On the other side, Jetson Xavier NX nodes that compose our fog-

micro-cluster are equipped with 1Tb M.2 NVMe SSD. All nodes 

are interconnected by means of a 1 Gbits switch. The master 

node distributed task between other nodes and host the local 

Docker image registry. GlusterFS is the open-source file system 

that is deployed on to distribute and store data on the entire 

cluster.  

 
Table 3. Read Speed on different drives. 

Drive Device Reading 

Speed [Mb/s] 

SSD USB 3 Raspberry Pi 4 245.3  

 Jetson Xavier NX 268.7  

SD Card Raspberry Pi 4 27.8 

 Jetson Xavier NX 28.3 

SSD NVMe Jetson Xavier NX 564.5 

 

Computing nodes and master node are powered by Ubuntu 20.04 

LTS 64 bits for Raspberry Pi 4B 8Gb. While the Nvidia Jetpack 

4.4.1 is deployed on Nvidia Jetson Xavier NX. Nvidia Jetson 

family can cooperate with Azure IoT Edge or AWS IoT 

Greengrass when more resources are required can run 

algorithms from different framework while other alternatives 

such as Edge TPU is only compatible with TensorFlow Lite 

models and Google Cloud. 

The micro cluster can be upgraded by replacing Raspberry Pi 4B 

by Hardkernel Odroid H2+, while Nvidia Jetson Xavier NX can 

be replaced by Nvidia Jetson Xavier AGX in function of needs 

of computing and/or training. 

 

 

3.1.2. IoT Gateways 

 

IoT gateways support multiples protocols and data formats 

ensure the interoperability between all sensors. Data received 

from multiple end-nodes (sensors) are cleaned, aggregated, or 

fashioned, and stored locally. IoT gateways also ensure data 

compression and/or preprocessing of data before their 

transmitting to fog level to advancing processing [3]. Lossless 

or Lossy data compression offers compression rate up to 10:1 

and 50:1 respectively [41]. The choice of lossless or lossy data 

compression algorithm depends on application itself. 

 

Our IoT gateway is a RAK7249 WisGate Edge Max (RAK7249-

3x-14x) that offers16 LoRa channels, which isequipped with a 

backup battery and is able to connect multiple backhaul (LTE, 

Wi-Fi, and Ethernet). An OpenSDK develops custom 

applications on this gateway powered by OpenWRT. 

3.2. Federated Learning 

 

This approach is based on AI algorithms for the prediction of 

landslide triggering and displacement.  Broadly speaking, AI 

training is achieved entirely on the cloud or in an association 

edge-cloud. However, this paradigm is not adapted for 

continuous learning, geographically distributed location, and 

privacy sensitive data, which is the case of landslides warning 

systems. The Federated Learning (FL) is an emerging 

distributed learning that distributes training at edge level or end-

edge-cloud that  handles non IID training data, protects privacy, 

and changes the scale in terms of efficient communication, 

resource optimization, and security [15].  

Indeed, FL helps to deal with non-Independent and Identically 

Distributed Data (non-IID) training data where each algorithm 

of AI node works on a portion of data from the complete dataset. 

Moreover, nodes can have different training capabilities and 

amount of data to train. Thus, they can contribute variably to the 
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global model. FL encompasses this issue thanks to the Federated 

Averaging of all nodes’ contribution to the model update. 

In addition to that, IoT nodes present at edge level may undergo 

from low transmission rate, high latency, or intermittent 

connections. In fact, IoT nodes are composed of a 

microcontroller equipped with a set of sensors and powered by 

a battery or a solar panel. Furthermore, they dispose of very 

limited processing, storage, and memory capacities. 

Nevertheless, edge gateways dispose of wider resources than 

IoT nodes and can be completed with AI accelerators such as 

GPU and/or TPU.  

The training is shared between IoT gateways and fog micro-

cluster (Fig. 3). The cloud is eventually used for the first training 

of new model on a large amount of data. Then, the model is 

transferred to fog level where continuous learning is achieved in 

order to progressively improve the model accuracy and 

robustness. Edge gateways clear and aggregate data received 

from IoT nodes. 

 

When the size of the CNN algorithm to be trained by the micro 

cluster is too large, it is segmented in a sequence of sub-models. 

Then, each part of the original CNN is deployed on individual 

AI nodes to parallelize the training and deal with limited 

memory. Nonetheless, if the model is small enough to fit in the 

memory of a node, data can be portioned to parallelize the 

training.  

 

 
 
Fig. 3. AI Training process 

 

All AI nodes train the same model simultaneously with its 

belongings part of the dataset. According to the size of the 

dataset, the model is shuffled and randomly divided into small 

parts corresponding to the number of available AI nodes. In the 

case of larger dataset, model can be trained on chosen samples 

of the dataset that are trained on AI nodes [15]. 

 

Periodically, specific algorithms of artificial intelligences are 

deployed in the form of docker containers and are then trained 

on the accumulated data stored on the Fog. After what, Docker 

containers with retrained algorithms are redeployed by micro 

Kubernetes (micro k8s) on gateways at edge level. Micro k8s 

orchestrate containers in the micro-cluster in function of the 

needs of GPU or not to run the task. The local Docker registry 

maintain last images of different AI algorithms to allow their 

rapid deployment. Software stack is used by Ansible to deploy 

and replicate configuration easily on other new micro-clusters. 

 

Federated Learning (FL) allows us to process locally data 

without transmission to the cloud. It uses fog micro cluster, 

deploys near sensors to train models, decrease the latency in 

term of data transfer, and models the prediction response times. 

Moreover, FL implements continuous learning in order to 

improve the accuracy of them instead of having to transfer large 

amount of data to the cloud to retrain completely models. 

4. Conclusion 

 
In this paper, we have adapted our previous works [1,2] to 

integrate federated learning at fog level that aims continuously 

improve prediction accuracy of models. These latter have as 

main goal to detect anomalies in controlling parameters to 

predict a potential landslides occurrence by using Federated 

Learning.  

Our first goal was to propose a fog micro-cluster and edge AI-

IoT architecture capable of adapting the use of various artificial 

intelligence algorithm adapted to specificities of each landslides, 

local conditions, and various monitored factors. The second 

target of this work is to create a flexible architecture in term of 

integration more powerful hardware and adaptable to 

treatment’s needs without having to change operating system 

and software stack each time. Moreover, Ansible allows to 

deploy easily new nodes or redeploy the configuration by using 

new material more suitable.  

 

In our future works, we will test different intelligence artificial 

algorithms proposed in the literature and adapt them to be 

compatible with an operation in edge AI in order to validate 

definitively our suggested architecture. The latter will be also 

tested in other contexts than landslides to definitively validate 

its robustness. 
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