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Abstract 
With the advent of edge computing, the Internet of Things (IoT) environment has the ability to process data locally. The 

complexity of the context reasoning process can be scattered across several edge nodes that are physically placed at the 

source of the qualitative information by moving the processing and knowledge inference to the edge of the IoT network. 

This facilitates the real-time processing of a large range of rich data sources that would be less complex and expensive 

compare to the traditional centralized cloud system. In this paper, we propose a novel approach to provide low-level 

intelligence for IoT applications through an IoT edge controller that is leveraging the Fuzzy Logic Controller along with 

edge computing. This low-level intelligence, together with cloud-based intelligence, forms the distributed IoT intelligence. 

The proposed controller allows distributed IoT gateway to manage input uncertainties; besides, by interacting with its 

environment, the learning system can enhance its performance over time, which leads to improving the reliability of the 

IoT gateway. Therefore, such a controller is able to offer different context-aware reasoning to alleviate the distributed IoT. 

A simulated smart home scenario has been done to prove the plausibility of the low-level intelligence concerning reducing 

latency and more accurate prediction through learning experiences at the edge. 
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1. Introduction 

In the forthcoming years, with the continued flourishing of 

technology— identification, data capture, and processing 

capabilities—and increasing integration of large-scale data, 

even small- and medium-scale players in every sector of the 

industry would be drawn to adopt IoT solutions and services. It 

means hundreds of billions of things will be connected to the 

IoT in the near future. Data collection and data contextualization 

of devices have already been addressed in earlier researches [1–

3]. Most of the research has addressed these challenges through 

the middleware and IoT platforms. 

The weakness of these solutions are twofold: first, to address 

each challenge, one middleware is required (e.g., device 

management, protocol conversion, context-awareness) and there 

is no comprehensive middleware solution which is capable of 

addressing all aspects required by IoT, and, secondly, they are 

cloud-centric [4]. 

On the other hand, the vast number of devices which is 

expected to be connected to IoT lead to building very complex 

systems and architecture with a huge number of components, 

such as devices and service and so forth. In order to achieve 

expected stability and robustness mostly, complex controllers 

are needed; therefore, complex and uncertain plants usually 

cannot be encountered with well-known linear approaches. 

Complex controllers usually lack a straightforward design 

methodology, and their actual implementation is difficult (if not 

impossible). Fuzzy logic control is an intelligent technology that  

 

 

 

 

 

allows the conversion from logic statements to a nonlinear 

mapping based on it [5]. 

Nevertheless, the traditional approach of using intelligence 

in the cloud can be inefficient and call for more computational 

capacity, which is very expensive with the enormous amount of 

incoming data and huge forthcoming devices. Meanwhile, the 

advent of edge computing lets us use the computational capacity 

that is distributed over the network. It means edge computing is 

promising technology can pave the path for the industry players 

and research communities to cope with these issues. In this 

research, first, we introduce a two-level architecture for the 

adoption of edge computing to enabling distributed intelligence 

in order to provide intelligence of things by reaping the 

information of things closer to the devices. Then we propose an 

IoT gateway controller by leveraging fuzzy logic control to 

provide low-level intelligence (i.e., edge-intelligence) to the 

small data at the edge before providing high-level intelligence 

at the cloud. In order to demonstrate the feasibility of the 

proposed approach, a smart home application was exploited. 

To summarize, our goals are: 

• a novel two-level intelligence architecture to provide 

low-level intelligence closer the devices that reduces 

latency, optimizes the use of network bandwidth, and 

offload part of burden from cloud to the edge. 

• an implementation of IoT gateway regarding the low-

level intelligence in the architecture to demonstrate its 

performance in the smart home scenario; our results 
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show significant improvements in terms of latency 

compare to the cloud. 

• a fuzzy logic controller as a reasoner module in the 

gateway that learns and predicts the desired 

temperature for a cottage based on the location of the 

owner and data from sensors in the cottage. Results 

show higher accuracy in comparison to simple ruled 

based reasoner.  
• Setting fuzzy rules to improve efficiency of our 

proposed method. 

• Saving energy. Furthermore, it helps achieving 

financial savings. 

 

 

         Fig. 1. Distributed intelligent gateway controller in 

distributed IoT. 

The rest of the paper is organized as follows. Section 2, we 

introduced a prominent topic in this research, and related 

work with distributed reasoning. In Section 3, we 

introduced the two-level intelligence and the main 

characteristics of the proposed approach, autonomic 

gateway architecture. In Section 4, we focus on 

performance evaluation. Finally, Section 5 presents 

conclusions. 

2. Related Works 

In this section, we will first introduce reasoning then 

discuss various approaches proposed earlier for distributing 

reasoning in IoT. As stated in [6], there are two ways to study 

and build intelligence systems: top-down and bottom-up. The 

top-down study focuses on intelligent behavior such as thought 

and reasoning. For computers to simulate the same behavior, 

people need to figure out what an agent needs to know in order 

to trigger that behavior and what computational mechanisms 

could allow them to do to gain new knowledge based on the 

existing knowledge. Reasoning is one of the intelligent 

behaviors, which is a top-down method. Reasoning is about 

making conclusions and deriving new facts that do not exist in 

the knowledge base. Reasoning entails two essential concepts: 

knowledge and inference. Reasoning is a process to infer new 

knowledge based on existing knowledge. The same knowledge 

could have several different ways to be represented [7]. 

IoT leads to more challenges for reasoning; for instance, at 

any step of the data delivery process, from the sensor node to 

backend knowledge repositories, reasoning can occur. 

Reasoning latency with large data sets can be physically 

improved by distributing reasoning tasks [7]. In [8], it is noted 

that performance of the knowledge system can be increased by 

distributing of tasks which is due to that distributing of tasks 

leads to improving problem-solving of capacity and efficiency, 

expanding the scope of the application—otherwise known as 

domain—and facilitating implementation by splitting tasks into 

subtasks. The authors identify that distributed intelligence has 

advantages under three conditions; first, the data, knowledge, 

and control must also be distributed physically in addition to 

logically; second, the cost of communication is much lower than 

that of problem solution; and, last, system components 

collaborate with each other to solve the problem. In this paper, 

all of these conditions have been met.  

In other research [9], the authors pointed out other 

conditions in order to distribute reasoning regarding 

computational, communication, scalability, and availability 

advantages of distributed reasoning in dynamic and 

heterogeneous environments. First, data is highly dynamic and 

has ambiguous context; second, the amount of data is large 

compared to the computational capabilities of the IoT nodes; 

and third, collective intelligence can be achieved by sharing data 

and reasoning tasks.  

In [10], the authors discussed distributed reasoning in 

multiagent systems (MASs), where distributed software agents 

make decisions and operate collaboratively to reach some 

common goals for clients. Badica et al. [11] surveyed Rule-

based multiagent reasoning in the field of Ambient intelligence. 

The drawback of most MAS is that they have been developed 

for specific environments, support only relatively narrow 

knowledge domains, and are mostly closed systems using 

miscellaneous protocols, standards, and interfaces. 

Although the papers presented, discuss real use cases for 

distributing reasoning in IoT, all of them have a drawback they 

are cloud-based solutions as it is mentioned in Section 1; thus, 

aforementioned proposals straight our vision toward 

implementing IoT controller in order to distribute the reasoning 

of the context-aware application over the edge of IoT. 

3. Proposed approach 

3.1. Distributed Intelligent IoT Controller 

 

A Distributed Intelligent IoT controller, similar to IoT gateway, 

can help the edge computing by means of utilizing resource-

constrained. Given this, we introduce a distributed two-level 

intelligence with a three-planes logical functionality 

architecture on low-level intelligence for the edge of the IoT 

controller, as shown in Figure 1. The underlying motivation for 

developing a two-level intelligence for the edge of the IoT is to 

offload the burden from the cloud as cloud-centric solutions fail 

to provide low-latency, which is one of the IoT requirements. 

To reap value from both edge and cloud, we discuss how and 

why the intelligent plane can be located closed to the IoT edge 

devices (i.e., Distributed not centralized). As illustrated in 

Figure 1, the framework consists of two-level intelligence, high-

level intelligence, and low-level intelligence. 

The cloud controller would provide high-level intelligence 

[12]. Low-level consists of three planes called the intelligence 

plane, Software-Defined Networking (SDN) control and 

Context-awareness plan, and the forward plan. The two planes 

on the low-level intelligence, Intelligence plan, and SDN control 

and Context-awareness plane are the main building blocks for 

the Distributed Intelligent IoT controller. These building blocks 

are specific for different context-aware applications. In the third 
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plane, the forwarded plane is the same for all applications. The 

purpose of the intelligence plane is a mechanism of the learning 

process, which makes it possible for controller IoT gateway to 

manage input uncertainties, and the learning system can 

improve its performance over time by interacting with its 

environment, and the controller will be able to offer different 

context-aware reasoning to alleviate the distributed IoT. The 

SDN control and Context-awareness plane is responsible to the 

monitoring of communication between the applications and 

services in the cloud and user devices (i.e., smart city or smart 

home applications); therefore, the IoT gateways can be managed 

on the real-time needs and status dynamically and its ability to 

responds to any context with reasoning based on context-

awareness. The forwarding plane is responsible for forwarding 

data to user devices or Wireless Sensor Networks (WSN). Its 

operation relies on packet forwarding engine.      

Based on three plans, the controller can continually learn and 

optimize devices and protocols management strategies by 

interacting with the IoT devices (Figure 1). 

3.2. Autonomic IoT Gateway 

In this paper, to implement low-level intelligence at 

the edge of the network by the gateway, we introduced 

three modules, namely device management, protocol 

adapter, and reasoner, as shown in Figure 1. Reasoner is 

in charge of making local decisions. The device manager 

and protocol adapter play the role of the SDN control 

plane and forward plane, which means they control the 

flow of data to bind into the reasoner and fetch it back to 

the specific application. The focus of this paper is mainly 

on the reasoner module in great detail. To develop an 

entire IoT gateway by leveraging new software 

technologies and architectural concepts, in very much the 

same way, we implemented device management and 

protocol adapter according to the suggestions in   [13], 

[14] . In order to automated arrangement and coordination 

of complex IoT devices, there is a need for an autonomic 

gateway, which will enable implicitly autonomic control 

to some extent by fuzzy logic-based rules for the ability 

to offer reasoning for different context-aware applications 

as shown in Figure 2.   

In this paper, we demonstrate the design and 

development of an autonomic IoT controller with a 

context-aware reasoning service as a generic enabler to 

enable smart home automation independent of any 

particular home automation solution. The next section 

provides the design and development process of the 

reasoning service, which automates smart home 

applications. 

3.3. Context-Aware Reasoning as Generic Enabler for 

Dynamic Response and Real-Time Needs 

A large number of small-data are handled by the IoT 

gateway[15], in which these small data must immediately 

transform into actionable information to making technical 

decisions, as shown in Figure 1 on intelligence plane 

(e.g., temperature, humidity, sensor data. And so forth). 

Thus, making-decision and providing context-based 

services in order to gain distributed intelligence are 

attracting attention in the IoT. Reasoning, the most 

important part of decision-making, is about making 

conclusions and deducing new facts that do not exist in 

the knowledge base. The primary role of a reasoner is to 

reason based on the data fed into it [16]. 
 

 

Fig. 2. The Low-Level Intelligent Control Scheme. 

To design a reasoning service for context-aware 

applications that responds to context changes in the 

network, we designed a Fuzzy Logic Controller (FLC) 

that responds to context changes. Since FLC, like human 

logic, has no boundaries and is based on decision making 

methods, operation control is required for better decision 

making. The need for operation control has in turn led to 

the use of an FLC mechanism, that results in Figure 3. To 

make the reasoning engine an optimal predictor of the 

uncertainty factor of data, which enables the selection of 

reasoning to reduce the inference time of the sharing 

process, a generic enabler method is used to map an input 

to an output by using a logical interval of type 2, as 

explained in Section 3.3.3. In the next section, the 

fuzzification process model is explained. 

 

 

 
 

Fig. 3. Fuzzy Interface System. 

3.3.1. Fuzzification process for Real-Time Needs 

 

Due to the complexity of the system, parameters in this kind of 

process model equations are uncertain variables and interact 

with each other. These parameters include: first, system 

configuration parameters (i.e., the comfortable temperature 

values); second, operation conditions (i.e., utilization which is 
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the quote between the numbers of requests for regulation and 

reply within a timer event); third, parameters which can only be 

calculated by interval type-2 which will affect the control cycle 

time. Since the effect of uncertain parameters is different, some 

have a significant influence on the system response, and some 

do not. In order to reduce the computational time, only those 

parameters which have a significant impact on system behavior, 

are considered and treated as fuzzy variables in this paper. The 

data input load to dynamic time-varying is utilized in order to 

study the speed response of the process model. In this 

experiment, each universe of discourse is divided, as shown in 

Table 1, Table 2, and Table 3. Many types of curves can be used 

(e.g., Gaussian, sigmoid, triangular, trapezoidal, Z-shaped, and 

so forth), but in this experiment, we used Gaussian (Ga) as 

membership function. The fuzzy system consists of two input 

parameters:  one, current temperature, Figure 4(a) and, two, 

Estimated Time of Arrival (ETA), Figure 4(b). The former is 

gathered from the user using a mobile application, and the latter 

is gathered via the indoor sensor temperature. The system has 

one output parameter, Figure 4(c), that controls the heater speed 

of the heating system. 

 

Fig. 4. Type-1 fuzzification and its response to data input (a) 

Current temp. (b) ETA (c) output. 

Table 1. The FLC model universe of discourse. 

 MF Type of MF Parameters 

MF1 Very Cold Ga 13, 1.69 

MF2 Cold Ga 17, 1.69 

MF3 Comfortable Ga 21, 1.69 

MF4 Hot Ga 25, 1.69 

 
Table 2. The ETA universe of discourse 

 MF Type of MF Parameters 

MF1 Very Near Ga 0, 0.849 

MF2 Near Ga 2, 0.849 

MF3 In-Between Ga 4, 0.849 

MF4 Far Ga 6, 0.849 

MF5 Very Far Ga 8, 0.849 

 

Table 3. The Speed of Heater universe of discourse 

 MF Type of MF Parameters 

MF1 Off Ga 0, 276.4 

MF2 Slow Ga 750, 276.4 

MF3 Medium Ga 1250, 212.3 

MF4 Fast Ga 2000, 212.3 

 
 

Table 4. Normalized effects of uncertain parameters for 

temperature.   

Indoor Temperature / 

Outdoor Temperature 

Cold Cool Medium Hot 

Cold Cold Cold Cold Medium 

Cool Cold Cool Cool Medium 

Medium Cool Medium Medium Hot 

Hot Cool Medium Medium Hot 

 

 

Table 5. Normalized effects of uncertain parameters for the 

system.   

Temperature / 
ETA 

Very Near Near In-
Between 

Far 

Cold Fast Fast Fast Medium 

Cool Fast Fast Fast Medium 

Medium Fast Medium Slow Slow 

Hot Off Off Slow Slow 

3.3.2. Generic Enabler Inference Sharing Engine for 

Dynamic Response 

 

The Generic Enabler Fuzzy Inference System (GNFIS) is a 

method of mapping an input to an output using fuzzy logic 

interval type-2.  The GNFIS tries to formalize the context-

awareness reasoning process of human language by means of 

fuzzy logic (by building fuzzy rules). 

GNFIS is based on fuzzy inference methods, which are 

categorized into direct and indirect methods. Direct methods, 

such as Mamdani's and Sugeno's, are the most commonly 

used—these two methods only differ in how they obtain the 

outputs, and indirect methods are more complex [17]. 

Nevertheless, in this paper, Mamdani's fuzzy inference method 

was chosen. Mamdani's method is the most commonly used in 

applications due to its simple structure of min-max operations. 

It is, therefore, more suitable for the system design of a fuzzy 

system [17]. The GNFIS controller consists of a plant system as 

the controlled process with uncertain source parameters, 

context-awareness changes, and packet forwarding in the 

gateway. The second part is a type-2 fuzzy controller that has a 

controlling element which generates control input. The third part 

is the controlled variable, and the fourth is the feedback control 

system, which is an output observed information. 

3.3.2. Generic Enabler Fuzzy Inference system 

With clear indications of context burstiness in edge 

gateways and to mine the context of such situations, to 

capture these kinds of context arrival properties, we used 

dynamic fuzzy modeling to model the time-varying 

arrival rate and to capture their essential correlation. 

This fuzzy approach model allows an uncertainty-

based parameter in the mathematic control to incorporate 

all the uncertainty about their values. These parameters 
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model and normalize effects of every uncertain 

parameter, concerning output interests, are computed in 

two steps. In the first step, the fuzzy rules defined in Table 

4 have been applied over two fuzzy values previously 

obtained, representing the outdoor and indoor 

temperature. With these fuzzy rules, we obtain the degree 

of truth of each possible linguistic variable for 

temperature based on both indoor and outdoor 

temperature. In the second step, the system can decide 

about what action to do in order to adjust the room 

temperature. This is the rationale behind applying another 

set of fuzzy rules, as depicted in Table 5, where the inputs 

are the temperature obtained in the fest step and the ETA 

and the degree of truth of action to do. The benefit of 

having fuzzy antecedents is to provide a basis for an 

interpolation mechanism. To accomplish this, the 

investigation of probability distributions of the simulation 

results under parameter uncertainties is very important to 

ensure the accuracy of the model predictions. The 

interpolation model presented in this paper helps 

identifying the upper and lower bound model outputs.  

The next section explains the motivation behind 

deploying the type-2 fuzzy logic system and its ability to 

ensure the accuracy of the model predications. 

3.3.3. The Components of Type-2 Fuzzy Sets 

The basic phenomenon of type-1 fuzzy (T1FLS) 

arithmetic, which consists of the overestimation of results 

depending on the actual form of the fuzzy rational  

 

 
Fig. 5. Type-2 fuzzification and its response to uncertainty data 

input (a) Current temp. (b) ETA (c) output. 

expression, has been shown to be a practical problem 

[18]. Type-2 FLSs (T2FLSs) is proposed as an extension 

of T1FLS. While designing a T1FLS, expertise and 

knowledge are needed to decide both the MFs and fuzzy 

rules. The T1FLS, whose MFs are type-1 fuzzy sets, is 

unable to handle rule uncertainties directly. T2FLSs can 

better deal with the vagueness inherent in linguistic words 

than T1FLSs. The use of fuzzy MF models the 

uncertainties. Thus, T2FLSs are a better choice for cases 

where establish the exact MF for a fuzzy set is difficult, 

which is very useful to tackle uncertainties [19]. Figure 5 

shows the components of the T2FLS inputs as, one, 

current temperature, Figure 5(a) and, two, Estimated 

Time of Arrival (ETA), Figure 5(b), and, three, T2FLS 

output, Figure 5(c). Contrary to type-1 fuzzy in which 

membership functions in sets are certain, in type-2 fuzzy 

sets, membership functions are themselves fuzzy. 

Therefore, the antecedents and the consequents of the 

rules in type-2 fuzzy sets are uncertain. While a type-1 

membership grade is a crisp number in the interval of [0, 

1] as shown in Figure 3, a type-2 membership grade can 

be any subset in the interval of [0, 1] as shown in Figure 

5, which is called primary membership. besides, in order 

to define the possibility for primary memberships, there 

is a secondary membership value for each primary 

membership value [20]. The secondary membership 

functions value-range are [0, 1], in generalized T2FLSs, 

they are uniform functions that only take on the value of 

1 in interval T2FLSs. Compared to interval T2FLSs, the 

computational burden of general T2FLSs is very high. 

The interpolation model presented in this paper is 

deployed by using T2FLS, which is described in Section 

4, and Figure 6 depicts the scenario of the application 

domain. We also investigated the performance and 

reliability of the approached model to compare it with the 

T1FLS. The T2FLS shows the ability that it can be 

applied in an engineering context provided the uncertain 

parameters are caused by deficiencies in any part of the 

model due to lack of knowledge. The uncertainties in the 

models are related to information gaps that can typically 

be filled by human subjective opinion on the unknown 

quantities. 

3.3.4. GNFIS Resilience Management 

The principle autonomic objective of IoT Gateway is to 

provide a higher recovery level for resilience compared to 

current IoT Gateways. The Fuzzy resilience controller 

initially works with the input variables [21], such as the 

difference between the actual resilience level and the 

resilience target. The GNFIS has the ability to perform 

autonomic resilience management based on stability and 

robust controller. The adaptation and learning mechanism 

observe the inputs arrive from the control system and 

adapts the parameters of the controller to maintain 

resilience management performance even if there are 

changes in the controller process (i.e., plant) with 

heterogeneous source data flows, which leads to improve 

performance over time. 



Firouzi et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 1 (2021) pp. 17-25 

22 

 

 Fig. 6. The node-red based topology scenario. 

3.3.5. GNFIS Reliability Management 

When designing reasoning for context management, 

it is important to consider the aspect of reliability. This 

concern is met with accuracy and synchronization 

mechanisms in adjusting the output of the GNFIS 

controller. The controller in the approach is designed so 

that its learning controller has the ability to improve the 

performance of the loop controller process and utilizing 

feedback information from the controller process. The 

inputs to the controller are fitted with synchronization 

between different devices and protocols. The controller 

has the ability to lower the risk of the inputs concerning 

either the protocols or devices error and to distribute the 

output. This ability will improve the reliability of the 

gateway. 

3.3.6. Software and Hardware Used in Topology Evaluation 

To validate the framework, we defined a topology by 

using the Node-Red tool [22], which is an open-source 

flow-based development tool for the integration of IoT 

hardware devices, APIs (Application Programming 

Interfaces) and online services developed by IBM 

Emerging Technology. Figure 6 shown the node-red 

flow-based prototype, and it models gateway controller 

for IoT applications (i.e., smart home reasoner as a flow 

of information among components). The whole topology 

is divided into four components, a user interface, a 

reasoner, a protocol adapter, and device 

controller/management.  

In order to evaluate the controller component 

behavior, we deployed our gateway in an uncertain data 

flow environment with Raspberry Pi 4 Single Board 

Computers (SBC) with 1.5 GHz 64-bit quad-core ARM 

Cortex-A72 processor and 4GB RAM, running Linux 

Raspbian Buster with desktop and recommended  

 

 

 

 

 

 

software. For the device controller, a Tellstick Net [23] is 

used, and it is a device that lets you remotely control your 

connected electronics via the Internet. It is compatible 

with many different remote socket receivers. Section 4 

describes the prototype testing to evaluate effectiveness 

and responsiveness quantitatively. 

4. Performance evaluation 

We thoroughly tested the prototype to evaluate the 

performance of gateway and the reasoning module, along 

with two primary guidelines: 

 

• Evaluation of output changes of the gateway 

controller while overloading with data flows to 

the inputs. In this case, the primary purpose is to 

evaluate and demonstrate GNFIS effectiveness 

and resilience quantitatively. 

• Evaluation of required bandwidths for the 

controller compare to the traditional cloud 

system. 

• Evaluation of power consumption of controller 

compare to the traditional heating system. 

• Evaluation of distribution accuracy in the 

controller process to the output for testing the 

effectiveness and reliability. 

 

The main goal of this section is to verify and assess the 

effectiveness of the proposed approach by focusing on a 

few key aspects of the implemented GNFIS controller. 

Figure 7 depicts the scenario of smart home reasoning. 

The performance results below are based on 

experimentation over a testbed, which shown in Figure 6. 

The smart home mobile interface suggests the fastest 

route to cottage location. When a user starts to send a 

request, the application forwards an activation request to 

the smart home reasoning in the autonomic gateway. 

After the confirmation of the activation request, the 
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gateway starts heating the cottage to module ETA and 

temperature of the interior.  The user is able to check if 

the heating has started. GNFIS can learn about activation 

requests and heating gain patterns from historical data and 

predict for the next activation request to start heating. 

 

Fig. 7. Illustration of Smart Home Reasoning in the Autonomic IoT 

Gateway. 

4.1. Experiment of Gateway Response time 

To evaluate the GNFIS, we developed a Nod-Red 

based application running on Raspberry Pi 4 (Model B) 

and Tellstick; as shown in Figure 6, it is sending and 

receiving messages within the activation requested. One 

of the most noticeable features of edge computing 

compared to the cloud is latency. Latency shows how fast 

a gateway has reacted to the devices.  For evaluation of 

the performance GNFIS of the gateway, we measured and 

compared the latency of reasoning within the activation 

requested at both cloud and edge (gateway) based on QPS 

(query per second). As shown in Figure 8, the reasoning 

at the edge has had shorter response times and shorter 

latency compared to cloud computing. By increasing the 

QPS from 10 to 40, the response time linearly increases 

for both edge and cloud, which is 200 ms and 900 ms, 

respectively. The response time starts to increase 

exponentially, after 24 QPS, for the cloud to more than 

4000 ms at 60 QPS. With considering 1 second as 

acceptable latency, we can see the gateway can support at 

most 56 QPS, and the cloud can handle 41 QPS. Figure 9 

shows the same trend as Figure 8. When the number of 

edge devices is increased to 60, the latency quickly 

increases to about 1200ms. Consequently, 50-56 edge 

devices are the maximum loads for a gateway. These 

preliminary results show that providing low latency and 

low-level of the knowledge to reduce dependency on 

cloud is possible at the edge (gateway with GNFIS) of the 

IoT. 

 
Fig. 8. Edge and cloud reasoning response time. 

 

Fig. 9. Scalability in response time. 

4.2. GNFIS Required Bandwidth 

In order to investigate the required bandwidths, it is 

assumed that the four bandwidths for uploading service 

demand responses is (5, 10, 15, 20) ∗ 104 bits per second 

and their transmission distance is different. Among them, 

the transmission distance of service demand responses 

cloud center architecture require is much longer than the 

edge computing architecture. As shown in Figure 10 the 

edge computing architecture require less that bandwidth 

compare to the cloud. 

 
Fig. 10. The required bandwidth. 

4.3. GNFIS Electricity Consumption. 

 In this paper, only the heating electricity 

consumption is considered to evaluate the electricity 

consumption. Heater electricity consumption is higher if 

high voltage is used. As you can see in the Figure 11, we 
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have divided the power of the heater into 4 effective 

modes (such as the fuzzification part) zero (off), 

one(slow), two(medium), four(fast). 

For simplification in this figure, whenever the 

effective mode change is included. Our proposed system 

requires the use of higher hairs compared to older home 

heating systems. 

 

 

Fig. 11. Effective mode of each system for one day. 

4.4. GNFIS Reasoning Performance 

In order to evaluate the GNFIS controller, we 

compared its accuracy with a proportional integral 

derivative controller (PID) based on the statistical 

parameters such as the root-mean-square error (RMSE), 

and Mean absolute percentage error (MAPE) by 

comparing predicted and measured values of GNFIS. The 

RMSE and MAPE are defined by the Equation (1) and (2) 

respectively. Table 5 shows the result. The GNFIS 

controller has resulted in lower RMSE and MAPE 

compared to the PID. 

RMSE = √
1

𝑛
+ ∑ (𝑦𝑝𝑟𝑒𝑑𝑖 − 𝑦𝑜𝑏𝑠𝑖)

2𝑛
𝑖=1  (1) 

MAPE =
100%

𝑛
+ ∑

|𝑦𝑝𝑟𝑒𝑑𝑖−𝑦𝑜𝑏𝑠𝑖|

𝑦𝑝𝑟𝑒𝑑𝑖

𝑛
𝑖=1  (2) 

 

Table 5. Performance characteristics of heating system with Fuzzy 

Type 1, 2, and PID.  

Controller  RMSE MAPE 

PID controller 0.325 5.365 

Fuzzy type-1Controller 0.108 4.823 

Interval Fuzzy type-2 Controller 1.942 4.064 

5. Conclusion 

We are experiencing a significant problem of distributed 

IoT gateways that continuously perform localized analytics and 

leverage the model learned from large-scale data for IoT 

intelligence. In this paper, we present an architecture for a 

distributed intelligent gateway controller in a distributed IoT 

framework that addresses the challenge of building a distributed 

intelligent controller for resilient, reliable, and low-latency 

intelligent control in distributed IoT. The proposed approach is 

designed for the purpose of building an edge intelligent 

controller to provide low-level intelligence, and the cloud 

controller would provide high-level intelligence. A simulated 

smart home scenario has verified the plausibility of the proposed 

approach on a Raspberry Pi 4 Model B as a proof-of-concept. 

Moreover, this paper presented the fuzzy logic system as a 

reasoner to make decisions. The results show that the use of a 

fuzzy logic system significantly reduces the latency and 

increases the accuracy of edge controller. As a complement to 

the work presented in this paper, an outstanding work that can 

be done in the future is a distributed edge gateway controller for 

large-scale IoT applications. 
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