
 Journal of Ubiquitous Systems & Pervasive Networks

Volume 14, No. 2 (2021) pp.27 -35

* Corresponding author.

E-mail: davide.arcelli@univaq.it, davide.arcelli@gmail.com

© 2020 International Association for Sharing Knowledge and Sustainability.

DOI: 10.5383/JUSPN.14.02.004
27

Understanding and Comparing Approaches for Performance
Engineering of Self-adaptive Systems Based on Queuing Networks

Davide Arcellia *

aUniversità degli Studi dell’Aquila, L’Aquila, Italy, 67100

Abstract

Enabling self-adaptation within hardware/software systems is a complex task, mainly due to environment uncertainty

that has to be faced while the system is providing its functionalities. Besides, non-functional goals that have to be met by

the system may be introduced, defining Quality-of-Service (QoS) requirements which drive the adaptation.

This paper enhances a previous study which surveyed the literature with respect to performance-driven self-adaptation,

supported by the Queuing Network paradigm. The seven approaches identified in previous work are detailed in this

paper based on a well-defined taxonomy deriving from the former’s classification scheme and spanning over different

dimensions, with particular emphasis on the way adaptation mechanisms are introduced, e.g. available knobs, non-

functional goals, sources of uncertainty. Based on such taxonomy, internal characteristics of those approaches are

described, as well as commonalities and differences, aimed at providing a detailed view of the current state-of-art in the

context of performance-driven self-adaptation supported by the Queuing Network paradigm.

Keywords: Self-Adaptive Systems, Software Architecture, Autonomous Systems; Software Performance Engineering;

Queuing Networks.

1. Introduction

Recent advancements in IT technologies have brought to a

wide plethora of application domains for modern

hardware/software systems. Many of those envision the latter

operating in dynamic environments with different sources of

uncertainty that they have to face while providing their

functionalities [1, 2].

To this aim, system architectures have switched to a more

“elastic” paradigm, which allowed to develop the so-called

Self-adaptive Systems (SaSs) [3].

A SaS is composed by a managed and a managing subsystem:

the former comprises sensing and actuating components which

allow to perceive and affect the environment, respectively; the

latter subsystem, instead, includes controllers that exploit

sensed data in order to devise adaptation of system’s behavior

resulting into actuation.

Hence, the two subsystems are coupled each other and such

coupling often results into MAPE-K feedback loop(s) [4], i.e. a

Knowledge (K)-based architectural model that divides the

process of adaptation into four phases: Monitor (M), Analyze

(A), Plan (P), and Execute (E), as illustrated in the typical

reference model for self-adaptation of Fig. 1.

Fig. 1. Reference model for self-adaptation.

In this domain, non-functional goals have been taken into

account by many approaches. In particular, performance has

emerged as a top concern, as highlighted by several literature

reviews that have been conducted in the last decade [3, 5, 6].

Modeling and analysis notations have been introduced in order

to represent SaSs and assess their performance. Besides,

several techniques have been exploited in order to optimize

non-functional attributes of such systems.

mailto:davide.arcelli@univaq.it
mailto:davide.arcelli@gmail.com

Davide Arcelli / Journal of Ubiquitous Systems & Pervasive Networks, 2 (2021) 27-35

28

For example, Control Theory (CT) [7] – i.e. a mathematical

approach to properly control continuously operating dynamical
systems – allows to introduce (global or local) MAPE-K

feedback controllers within Queuing Networks (QNs) [8],

aimed at providing formal performance guarantees [9, 10, 11];

As further examples, Machine Learning (ML) [12] – i.e. an

approach that builds mathematical models which allow to make

predictions or decisions without being explicitly programmed

to perform the task – and Search-space Exploration [13] – i.e.

metaheuristics looking for near-optimal solutions to

optimization problems – can be used to automatically reason

and decide about adaptation, driven by performance

requirements [14, 15, 16, 17, 18, 19, 20, 21, 22].

The huge number of dimensions over which such a big arena

spans, makes the domain investigation very hard and subject to

entropy. For this reason, in a recent survey [23] I have focused

onto a particular non-functional aspect of SaSs, i.e.

performance. More in detail, in the wide plethora of available

performance notations – e.g. QNs [8, 24], Markov models [25],

Petri-nets [26], etc. – I have restricted such literature study to

QNs, which represent one of the most addressed performance

modeling and analysis paradigms [3, 5, 6].

Seven approaches enabling performance-driven self-adaptation

of SaSs by exploiting QNs have been identified through

previous investigation, whose main characteristics have been

preliminarily pointed out and discussed.

This paper enhances the previously published survey [23] by

going into details of the adaptation mechanisms introduced by

those approaches. First, a well-defined taxonomy is presented,

enhancing the classification scheme of the previous survey.

Then, the considered approaches are characterized based on the

presented taxonomy and such characterization is finally used to

detail the approaches and highlight commonalities and

differences, in the light of their latest advancements.

As a result, this work contributes with the previous one to

provide a detailed view of the current state-of-art in the context

of performance-driven self-adaptation supported by the QN

paradigm.

The paper is structured as follows: Sec. 2 describes the

knowledge base including of surveyed approaches (Sec. 2.1)

and presents a taxonomy for their classification (Sec. 2.2). On

these basis, Sec. 3 provides the classification of the considered

approaches and then describes and compares them (Secc. 3.1

and 3.2, respectively). Results are summarized in Sec. 4, whilst

Sec. 5 concludes the paper.

2. Methodology

2.1. Identifying the Approaches for the Knowledge Base

This survey grounds on the knowledge base from my previous

work [23], which consists of a number of literature studies

addressing performance concerns of SaSs while spanning over

several other dimensions.

In particular, I have considered two surveys, one by Weyns et

al. [3] and one by Becker et al. [6], which reported the state-

of-art on addressing non-functional concerns by means of

formal notations and MDE, respectively, until 2012. While

doing this, I have also taken into account possible

evolutions/extensions of the considered approaches that might

have introduced new features or improved the existing ones.

Additionally, I have considered a more recent systematic study

by Shevtsov et al. [5], which reviewed the literature with

respect to approaches exploiting CT to introduce self-

adaptation and provide formal non-functional guarantees.

Among the approaches included in those three studies, five

exploit the QN paradigm to address performance modeling and

analysis, namely SimuLizar [18], QoSMOS [19, 27], SAFCA

[20, 28], ICAC [14] and Adaptive Queuing Networks (AQNs)

[9, 10] 1 . Furthermore, by additional search performed on

Google Scholar 2 and Scopus 3, two more recent approaches

have been identified, i.e. the ones from Incerto et al. [11] and

the other one named SMAPEA QNs [22, 29] 4.

2.2. A Taxonomy for Classifying the Surveyed Approaches

In this section preparatory terms which can facilitate the

comparison of different Performance Engineering approaches

are introduced. To this aim, the different classification schemes

introduced by the three systematic studies in the knowledge

base, i.e. [3], [6] and [5], are taken as inspiration. As a result,

the feature diagram [30] in Fig. 2 is devised, defining the

following top-level categories of interest for Performance

Engineering of Self-adaptive Systems (PESaSs), which are

detailed in Table 1:

• Meta-data: This category reports the reference published

papers and possible literature studies that have included

the approach.

• System architecture: This category identifies the type of

applications addressed by the approach and the exploited

modeling language for representing the system.

• Performance analysis: This category characterizes the

approaches with respect to the adopted (QN-based)

performance analysis notations and methods, as well as

additional artifacts and possible transformations which

are needed in order to support the analysis.

• Adaptation: This category characterizes the adaptation

mechanisms enabled by the approaches, based on typical

aspects that have to be considered while introducing

them, e.g. goals, knobs, inputs that can be monitored but

not affected, etc.

• Time of application: This category is aimed at assessing

if an approach can be applied at design- and/or run-time.

• Applicability: This category characterizes the approaches

in terms of available tool-support and the provided

validation.

Fig. 2. Feature diagram representing the top-level categories

for Performance Engineering of Self-adaptive Systems.

1 Since the approach in [14] is unnamed, ICAC acronym is introduced

from its publication venue, i.e. the International Conference on
Autonomic Computing.
2 https://scholar.google.it/
3 https://www.scopus.com/
4 Since the approach in [11] is unnamed, EMPC acronym is introduced

from its control technique, i.e. Efficient Model Predictive Control.

https://scholar.google.it/
https://www.scopus.com/

Davide Arcelli / Journal of Ubiquitous Systems & Pervasive Networks, 2 (2021) 27-35

29

3. Classification

Table 2 classifies the seven considered approaches based on

the classification scheme devised in Table 1 and described in

Section 2.2. In the following sub-sections, the surveyed

approaches are described by looking at the columns of Table 2

(Sec. 3.1), whilst their comparison basically corresponds to the

description of the rows of Table 2 (Sec. 3.2).

3.1. Description of the Surveyed Approaches

SimuLizar [18] grounds on the Palladio Component Model

(PCM) [32] and extends it with a self-adaptation viewpoint and

a simulation engine (namely ProtoCom [33]). A QN model is

automatically derived from the PCM model by means of a

model-to-model (M2M) transformation. Such QN model is

simulated in order to obtain system response time. Self-

adaptation viewpoints are specified in terms of Story Diagrams

[34] exploiting tags (stereotypes) such as <<assign>>,

<<timing>> and <<++>>, which are manually specified for

Table 1. Taxonomy for Performance Engineering of Self-adaptive Systems.

Classification dimension Description

Meta-data

References This reports the reference papers for the corresponding approach.

Literature studies Systematic studies and surveys where the approach has been identified.

System architecture

Architecture paradigm The considered approaches can be based on components, services, concurrent architectures or multi-tier applications.

Modeling notation This reports the modeling language adopted to represent the system architecture and to enable self-adaptation. It may
coincide with performance analysis modeling notation.

Performance analysis

Modeling notation This reports the language adopted to represent a performance model for the self-adaptive system. As QNs represent

the main foundational paradigm of our approach, we restrict to approaches exploiting QNs [8] or a particular
extension of the latter, namely Layered Queuing Networks (LQNs) [24], as performance analysis model.

Method The examined approaches may adopt performance models that can be solved analytically or by simulation [31].

Additional models This reports whether pivotal representations of the system are exploited for performance analysis aims.

Transformation Pivotal representations of the system may be derived from or used to generate – automatically, semi-automatically or
manually – analysis models. To this aim, model-to-model or model-to-text transformations can be exploited. The

provisioning of such transformations represents a classification criterion.

Adaptation

Type Conforming to Shevtsov et al. [5], four different types of adaptation can be devised:
1. Component adaptation “refers to changes at the level of software components, such as the load of services

and the degree of parallelism that components process requests”.

2. Parametric adaptation “refers to changing the values of variables of the application software or middleware
services. These types of actuators are typically domain-specific; examples are the degree of video

compression and the length of a queue with pending requests that need to be processed”.
3. Mode adaptation “refers to a variation in the mode of operation, which can be either mode change or mode

switch. An example of a mode change is an increment in the quality of content that is being served by a video

application; an example of mode switch is an alteration of the buffering schema of a video application”.
4. Architecture reconfiguration “refers to a run-time adaptation of the architectural structure or behavior of the

application”, which basically means selecting an (optimal) alternative system architecture and actually re-

arranging the current one conforming to implement the former.

Controlled variables
(Goal)

This category corresponds to the non-functional indices that compose the “fitness function”, i.e. the goal defined by
non-functional requirements. For example, response times, throughputs, utilizations, etc.

Control variables

(Knobs)

This category reports “what is adapted”, i.e. the predefined knobs that allow to tune the system model in order to

perform adaptation. For example, concurrency level, CPU capacity allocation, service quality levels, routing
probabilities, component service rates, etc.

Disturbances This category corresponds to system parameters that may be observed but not influenced. Hence, they represent what

the system has to face by self-adaptation in order to satisfy the predefined goals.

Means Self-adaptation may be enabled by means of different techniques, e.g. Machine Learning, Control Theory, etc.

Pro-/Reactive As from Becker et al. [6], an adaptation strategy is reactive if the system triggers its self-adaptation when a goal is

already violated. If the system predicts that it might miss a goal sometime in the near future and hence adapts itself

preventively, the adaptation strategy is proactive.

Time of application

Design-/Run-time This category distinguishes between approaches applicable at design-time and/or run-time. Approaches belonging to

the former category may be exploited, e.g., to identify proper adaptation strategies; whereas, approaches from the

latter category may, e.g., “measure the environment” aiming at predicting system’s performance trend.

Applicability

MDE tools This category includes features for modeling the system and/or transform the system model into analysis models.

Analysis tools This category represents whether the non-functional analysis is supported by existing and/or ad-hoc tools.

Optimization tools The availability of tools for optimizing the adaptation represents a discriminant for the examined approaches.

Proof-of-concept Approaches can be evaluated in terms of formal correctness (i.e. formal demonstrations are provided), empirical
correctness (i.e. the system behaves as expected under controlled conditions) or realism (i.e. input/output parameters

of the analysis model are similar to the ones of the actual system implementation).

Case study The approach validity is illustrated based on a real system design or implementation in a certain (reported) domain.

Davide Arcelli / Journal of Ubiquitous Systems & Pervasive Networks, 2 (2021) 27-35

30

elements involved in adaptation. The goal is to analyze system

response time in the transient phase, after the (reactive)

adaptation, under different workload intensities.

SimuLizar represents a Model-Driven performance modeling

and analysis tool that can be applied at design-time, without

any kind of optimization for the adaptation mechanism. Its

empirical correctness has been proven with respect to a load

balancing case study and a prototypal implementation has been

developed, aimed at demonstrating its realism.

QoSMOS [19, 27] is a framework which enables the dynamic

selection of services to face run-time changes, in the context of

service-based systems. The latter are thus modeled in BPEL

[35] and automatically transformed (in some unspecified way)

into QN and Markov models, for performance and reliability

purposes, respectively.

Proactive self-adaptation is in terms of architecture

reconfiguration that, in this context, consists of dynamic

service selection and resource allocation. The goal is to

optimize an arbitrary QoS utility function which involves both

performance and reliability requirements, e.g. system response

time, system failure probability, etc., aimed at facing the

operational profile [36], which specifies the workload and

service failure rates. Such an optimization grounds on an

algorithm which performs exhaustive search [37], whilst

Bayesian estimation [38] is exploited in order to parameterize

the system model with realistic values taken from the actual

implementation. This latter feature allowed to prove approach

realism, beside its empirical correctness.

QoSMOS is implemented a set of existing tools working in

synergy, i.e. KAMI [27], PRISM [39], ProProST [40] and

GPAC [41], and it has been validated with respect to a case

study represented by a Tele Assistance system.

SAFCA [20, 28] enables self-adaptation of distributed and

concurrent software architectures, by switching among

predefined queuing patterns – namely Dynamic Thread

Creation [42], HS/HA and Leader-followers [43] – at run-time,

in the context of Layered QNs. The goal is to reach acceptable

system response time and decrease packet loss ratio, while

maximizing the utilization of software resources. To this aim,

the system has to react to workload bursts, excessive queue

components queue length and failure occurrences. Hence,

queue lengths are monitored for performance, whilst the ratio

between arrival rate and system throughput is considered for

reliability; based on predefined thresholds, the adaptation is

triggered by SAFCA. Although empirical correctness and

realism have been proven, no tools are publicly available to the

community and no case studies have been presented.

ICAC [14] generates rulesets representing adaptation policies

for multi-tier architectures modeled as Layered QNs.

Self-adaptation takes the form of architectural reconfiguration

taking place through knobs consisting of component

replication level, CPU capacity and components allocation.

The former two knobs are tuned by exploiting a gradient-based

search algorithm [44], whilst component allocation is

formulated as a bin-packing problem [45] which is faced by

means of the n log n time first-fit decreasing algorithm [46].

An ad-hoc configuration optimizer is able to produce an

optimal configuration for a given workload.

The configuration optimizer is used by a decision-tree learner

[47] (i.e. a ML technique) at design-time, in order to obtain

optimal component replication levels and CPU capacities for

different workload intensities. The obtained configurations

allow the decision-tree learner to generate the rulesets aimed at

optimizing an arbitrary QoS utility function 5.

5 Notice that the only QoS utility function considered so far is system

mean response time.

The approach has been validated with respect to RUBiS

auction system [48], demonstrating that the response times

predicted by the model correspond well with the measured

response times (realism) and that the configurations carried out

by the configuration optimizer are close to optimal, as well as

the rulesets generated by the decision-tree learner (empirical

correctness).

Concerning tool support, LQNs are solved analytically by

means of the LQNS tool [49]. Moreover, the Weka tool [50],

which has brought authors to adopt a decision-tree learner,

might be used to investigate different ML techniques.

AQNs [9, 10] represent a particular family of QNs that allows

to equip system components (i.e. service centers) with local

Proportional Integral Controllers (PIDs) [51] that can adapt

component’s service quality level over a discrete set of

predefined service demands, based on the queue length, thus

resulting into an adaptation based on mode change 6. The goal

is to maintain components’ queue lengths at predefined values

– namely setpoints – representing (local) performance

requirements, by reacting to workload fluctuations and

unpredicted changes of the operational profile (i.e. the

probability that a processed request re-enters the system).

AQNs have been implemented into the Modelica framework

[53], which provides CT facilities and a simulation engine.

Furthermore, a library of predefined modules has been released

to ease system modeling and thus AQNs adoption by the

community [10].

Finally, AQNs correctness has been proven both formally and

empirically, with respect to the design of a system which

provides itineraries with different level of details (service

quality levels).

EMPC [11] exploits an Efficient Model Predictive Control

technique [54] – namely receding horizon [55] – to enable

proactive performance-driven self-adaptation mechanisms

within QNs representing component-based systems. To this

aim, formal models are exploited at run-time, such as Ordinary

Differential Equations (ODEs) [56] and Mixed Integer

Programming (MIP) [57], which allow to synthesize

controllers implementing optimal adaptation strategies in terms

of routing probabilities, components service rates and

concurrency level (i.e. knobs). Model-to-text (M2T)

transformation is exploited in order to obtain formal

specifications from QN models.

The goal is the optimal fulfillment of performance

requirements for the indices of interest (e.g. components queue

lengths and/or utilization, system throughput and/or response

time) through proactive prediction of workload fluctuations

and service degradation.

The approach has been extensively validated with respect to a

prototypal implementation of a load balancer. Correctness of

formal specifications has been demonstrated, as well as the

empirical correctness and the suitability of the QN model in

predicting the trends of the real system (realism). Furthermore,

the scalability of the approach has been evaluated and a

comparison of the MIP formulation to an equivalent Markov

model has been provided.

The well-known CPLEX tool can be exploited for solving MIP

optimization problems, however no further tool support is

available, as the approach heavily grounds on the development

of scripts to execute.

SMAPEA QNs [22, 29] represent a novel family of QN models

which allows to model and assess the performance of

component-based SaSs [29]. Advanced modeling constructs

6 The concept of system mode is known since more than a decade in
the context of dynamic adaptive systems and has been used to devise

different run-time configurations among which the system may transit

for self-adaptation [52].

Davide Arcelli / Journal of Ubiquitous Systems & Pervasive Networks, 2 (2021) 27-35

31

such as fork/join and class-switches are exploited in order to

suitably represent the managed and managing subsystems of

SaSs, as well as the occurring intra- and inter-dynamics.

The SaS is assumed to be able to operate based on different

(mutually exclusive) modes – e.g. normal and critical – thus

devising a mode profile [52]. This enables mode-switch

adaptation in the transient phase, by considering mode-profile

probabilities as knobs.

A further dimension for adaptation in SMAPEA QNs has been

enabled recently [22], by introducing the Controller Selection

Policy (CSP) optimization problem, which concerns the

routing probabilities defining how the requests are forwarded

to the controllers within the managing subsystem. The goal is

to find routing probabilities bringing to the optimal system’s

response time (in the transient phase) for each mode. To this

aim, Search-Based Multi-Objective Optimization [13] is

exploited, as a custom NSGA-II genetic algorithm [58].
Empirical correctness of SMAPEA QNs and the related

optimization approach has been proven with respect to a

realistic SaS for emergency response.
SMAPEA QNs can be developed by means of JSimGraph from

the JMT tool-suite [59]; the CSP problem can be solved by

exploiting a publicly available tool, namely smapeaqn.moo.

3.2. Comparison of the Surveyed Approaches

All the considered approaches exploit the QN paradigm for

performance modeling and analysis notation, in the form of

classic QNs [8] or their specializations (ad-hoc or standard,

such as LQNs [24]). This characteristic represents the

fundamental inclusion criteria in the knowledge base and,

consequently, it defines the focus of this paper.

In most of the approaches, the architectural notation coincides

with the performance notation, hence adaptation mechanisms

are directly enabled within the QNs, possibly involving M2T

transformation to solve an optimization problem (EMPC).

Instead, the remaining approaches – i.e. SimuLizar and

QoSMOS – exploit a different modeling notation for

representing SaS architecture – i.e. PCM [32] and BPEL [35],

respectively. M2M transformation is exploited to

(automatically or manually) obtain QNs from architecture

models devising different system configurations. Hence, QNs

usage is limited to performance indices estimation, while

adaptation takes place at the architectural model side.

Working at this side allows to address component-based

architectures (SimuLizar) as well as architectural paradigms at

a higher level of abstraction, e.g. service-based (QoSMOS).

Approaches exploiting classical QNs as architectural and

performance notation address component-based architectures,

whilst the ones exploiting LQNs focus on concurrent (SAFCA)

and multi-tier (ICAC) architectures.

A common characteristic of approaches relying on QN

simulation rather than analytic resolution is that they are

applied at design-time. Instead, proactive adaptation is

addressed at run-time and QNs are solved analytically, as

simulation might take too long in contexts where QoS

requirements must be fulfilled while the SaS is running.

The architectural notation affects the adaptation mechanisms

that can be enabled, especially in terms of modifiable knobs

[60]. For example, SimuLizar, which makes extensive use of

MDE, grounds on stereotypes and tagged values of a UML-

like profiling mechanism [61] to specify adaptation conditions

and the corresponding architecture model changes.

Instead, approaches directly on QNs tend to enable adaptation

of the QN stations’ service demands, in terms of CPU capacity

allocation (ICAC), service quality levels (AQNs) or service

rates (EMPC). However, other knobs at component level are

devised by those approaches, in order to regulate concurrency

(EMPC), replicas and their placement (ICAC), at run-time.

Moreover, as QNs are stochastic models, some probabilities

can represent knobs, such as routing (EMPC, SMAPEA QNs,

SimuLizar) and mode-switching (SMAPEA QNs) probabilities.

Commonalities can be observed concerning the adaptation

goals the system has to reach and the source of uncertainty it

has to deal with.

Workload variations are considered by all the approaches as a

primary source of uncertainty. In addition, SAFCA considers

components queue lengths, EMPC considers hardware
degradation, while AQNs and SMAPEA QNs involve aspects

related to the system’s operational profile – i.e. probability for

a request to re-enter the system after being served (AQNs) and
mode-switching probabilities (SMAPEA QNs). Furthermore,

approaches addressing performance and reliability consider

additional sources of uncertainty that are component failure

rates (QoSMOS) and occurrences (SAFCA).

In all the approaches except AQNs, system response time (RT)

represents an adaptation goal: in some cases, it is the only goal

(SimuLizar, SMAPEA QNs); in other cases, it can be

considered in conjunction to additional performance (ICAC,

EMPC) or reliability (QoSMOS, SAFCA) indices. Among the

former indices, requirements on components queue lengths are

defined in several approaches, i.e. QoSMOS, EMPC and

AQNs.

Goals are achieved by means of some “intelligence” that

optimizes adaptation. Search-based techniques are exploited by
QoSMOS (exhaustive search algorithms [37]), SMAPEA QNs

(genetic algorithms [58]) and ICAC (gradient-based search

[44], in conjunction with decision-tree learning [47]).

Control-based techniques seem particularly suitable to address

requirements on queue lengths, as demonstrated by AQNs –

through Proportional Integral Controllers (PIDs) [51] – and

EMPC [54] – through receding horizon [55] in conjunction

with MIP [57]. However, ad-hoc techniques can be also

developed to this aim, like SAFCA-Q and SAFCA-R.

All the approaches validate empirical correctness and most of

them – especially the ones applicable at run-time – prove

realism with respect to an actual SaS implementation (e.g.

QoSMOS validates Bayesian estimation [38] for model

parameterization) – not provided by AQNs and SMAPEA QNs.

Furthermore, approaches relying on Control Theory techniques

– i.e. ANQs and EMPC – prove the formal correctness of the

latter. Evaluation is provided with respect to a case study by all

the approaches except SAFCA, which is limited to a proof-of-

concepts of the proposed queuing patterns. For this reason,

SAFCA does not provide any tool support, which is instead

provided by other approaches in different forms and at

different extents. In particular, QoSMOS, ICAC SimuLizar

and SMAPEA QNs are supported by publicly available tools:

QoSMOS is a tool chain involving KAMI [27], PRISM [39],

ProProST [40] and GPAC [41] for the MAPE loop at run-time;

ICAC exploits the LQNS solver [49] for performance analysis

and the Weka tool [50] for optimization purposes; SimuLizar

uses PCM models [32] and story diagrams [34] for modeling
and the ProtoCom engine [33] for analysis; SMAPEA QNs are

entirely supported by JSimGraph from JMT tool-suite [59] for

performance modeling and analysis and provides a multi-

objective optimization tool for the CSP problem.

No particular tools are explicitly devised to apply EMPC, as it

envisions the development of Python scripts to be executed at

run-time. However, the CPLEX tool can be exploited to solve

MIP formulation. Finally, differently from other approaches,

AQNs have been developed within the Modelica framework

from scratch, resulting into a library of modeling components

that can be used to build system representations.

Davide Arcelli / Journal of Ubiquitous Systems & Pervasive Networks, 2 (2021) 27-35

32

Table 2. Classification of the surveyed approaches.

Category SimuLizar QoSMOS SAFCA ICAC AQNs EMPC SMAPEA QNs

Meta-data

References [18] [19], [27] [20], [28] [14] [9], [10] [11] [22], [29]

Literature studies [6] [6], [3] [6] [3] [5] - -

System Architecture

Architecture paradigm Component-

based

Service-

based

Concurrent Multi-tier Component

-based

Component-

based

Component-based

Modeling notation PCM BPEL LQN LQN QN QN QN

Performance analysis

Modeling notation QN QN LQN LQN QN QN QN

Method Simulative Analytical Analytical Analytical Simulative Analytical Simulative

Additional models No Markov

Models

No No No ODE,

MIP

No

Transformation M2M Unspecified No No No M2T No

Adaptation

Type Arch.

reconfig.

Arch.

reconfig.

Arch.

reconfig.

Arch.

reconfig.

Mode-

change

Comp./Par.

change

Mode-switch,

Goals System RT QoS utility

function
(Fail. Prob.,

Comp.

queue len.,
System RT)

System RT,

Packet loss
ratio,

Sw resource

utils,

QoS utility

function
(System RT)

Component

queue
lengths

Component

queue
lengths,

Throughput,

Utilizations,
System RT)

System modes’

RTs

Knobs Elements

tagged with
<<assign>>,

<<timing>>

or <<++>>
stereotypes

Service

selection,
CPU

capacity

allocation

Queue

patterns
(HS/HA,

Leader-

followers,
Dynamic

Thread

Creation)

Component

replication
level, CPU

capacity

allocation,
Components

placement

Comp.

service
quality

levels

Routing

probabilities,
Comp.

service rates,

Concurrency
level

Mode-switching

probabilities,
Controller

Selection Policies

Sources of uncertainty Workload

variations

Operational

model

(Service
failure

rates,

Workload
variations)

Component

queue

lengths,
Workload

variations,

Failure
occurrence

Workload

variations

Workload

variations,

Jobs exit
probability

Workload

variations,

Hardware
degradation

Workload

variations,

Mode-switching
probabilities

Means Story

diagrams

Bayesian

estimation

(params.
estimation),

Exhaustive

search
algorithms

Thresholds on

queue lengths

(SAFCA-Q),
Arrival rate

Vs System

throughput
(SAFCA-R)

Decision

trees,

Gradient-
based search

Prop.

Integral

Controllers

Receding

horizon,

Mixed Integer
Programming

Mode profiling,

Genetic algorithms

Pro-/Reactive reactive proactive reactive reactive reactive proactive both

Time of application

Design-/Run-time design-time run-time run-time design-time design-time run-time both

Applicability

MDE tools PCM KAMI,

PRISM,
GPAC

No No Modelica No JSimGraph

Analysis tools ProtoCom PRISM,

ProProST

No LQNS Modelica No JMT

Optimization tools No GPAC No Weka Modelica CPLEX smapeaqn.moo

Proof-of-concept Empirical

correctness,

Realism
(prototypal)

Empirical

correctness,

Realism

Empirical

correctness,

Realism

Empirical

correctness,

Realism

Formal

correctness,

Empirical
correctness

Formal

correctness,

Empirical
correctness,

Realism

(prototypal)

Empirical

correctness

Case study Load
balancing

Tele
Assistance

No RUBiS Itineraries
provision

Load
balancing

Emergency
handling

Davide Arcelli / Journal of Ubiquitous Systems & Pervasive Networks, 2 (2021) 27-35

33

4. Lessons Learned

The following key-points summarize the main findings

resulting from this literature study.

• System response time is the most addressed

performance metric.

• Typically, non-functional goals must be fulfilled while

facing workload variations.

• Reactive adaptation is usually addressed at design-time

by simulation, whilst proactiveness is typically

addressed at run-time by analytic resolution. In fact,

managing simulation overhead while addressing run-

time adaptation might be costly.

• MDE can provide useful support for performance

modeling and analysis of SaSs, however it seems to be

particularly suitable at design-time only.

• Control Theory can be successfully applied to provide

formal guarantees by introducing global or local

controllers.

• Optimization techniques such as Machine Learning,

Search-Space Exploration and Mixed Integer

Programming, can be exploited in order to optimize a

fitness function involving performance indices.

• Empirical validation with respect to a case study is the

basic form of evaluation which is typically provided.

Besides, exploiting control-based techniques implies a

need for formal validation, which represents an added

value.

• Actual system implementations are likely used in order

to parameterize analysis models in a realistic way

and/or to compare analysis results to measurements

from the running system.

• The availability of modeling and analysis tools, as well

as benchmark systems implementations is crucial for

the adoption of any approach for self-adaptation.

Relying on existing widespread tools and system

implementations represents a valuable choice, as ad-

hoc development can be very costly.

5. Conclusion

In this paper, I have extended previous work [ANT2020]

which surveyed the literature with respect to approaches

enabling performance-driven self-adaptation supported by the

Queuing Network paradigm. The classification scheme that

have been previously introduced has been revised in order to

carry out a taxonomy which allowed to detail the considered

approaches spanning among different dimensions, with

particular emphasis on the ways adaptation mechanisms that

have been introduced and their non-functional goals.

Internal characteristics of those approaches have been

described, as well as their commonalities and differences,

aimed at clarifying the state-of-art in addressing self-adaptation

by exploiting QNs. Hence, this work can be used to get a

detailed view of the current state-of-art in this context.

Acknowledgments

This work is supported by the Italian Ministry of Education,

University and Research -- MIUR, L. 297, art. 10.

The author would like to thank Dott. Davide Di Ruscio for his

precious suggestions concerning paper presentation.

References

[1] Perez-Palacin D, Mirandola R. Uncertainties in the

modeling of self-adaptive systems: a taxonomy and an

example of availability evaluation. Proceedings of the 5th

ACM/SPEC International Conference on Performance

Engineering. Dublin, IE, 2014.
https://doi.org/10.1145/2568088.2568095

[2] Camara J, Garlan D, Kang WG, Peng W, Schmerl B.R.

Uncertainty in Self-Adaptive Systems Categories,

Management, and Perspectives. Carnegie Mellon

University Tech Report CMU-ISR-17-110, July 2017.

[3] Weyns D, Iftikhar MU, de la Iglesia DG, Ahmad T. 2012.

A survey of formal methods in self-adaptive systems.

Proceedings of the 5th International C* Conference on

Computer Science and Software Engineering. Montréal,

CA, 2012. https://doi.org/10.1145/2347583.2347592

[4] Kephart JO, Chess DM. The vision of autonomic

computing. IEEE Computer 2003;36:41–50.
https://doi.org/10.1109/MC.2003.1160055

[5] Shevtsov S, Berekmeri M, Weyns D, Maggio M. Control-

theoretical software adaptation: A systematic literature

review. IEEE Trans. on Software Eng. 2018;44:784–810.
https://doi.org/10.1109/TSE.2017.2704579

[6] Becker M, Luckey M, Becker S. Model-driven

performance engineering of self-adaptive systems: A

survey. Proceedings of the 8th International ACM

SIGSOFT conference on Quality of Software

Architectures. Bertinoro, IT, 2012.
https://doi.org/10.1145/2304696.2304716

[7] Hellerstein J, Diao Y, Parekh S, Tilbury D. Feedback

Control of Computing Systems. Wiley, 2004.
https://doi.org/10.1002/047166880X

[8] Lazowska ED, Zahorjan J, Graham GS, Sevcik KC.

Quantitative system performance - computer system

analysis using queueing network models. Prentice Hall,

1984.

[9] Arcelli D, Cortellessa V, Filieri A, Leva A. Control theory

for model-based performance-driven software adaptation,

Proceedings of the 11th International ACM SIGSOFT

Conference on Quality of Software Architectures.

Montréal, CA, 2015.
https://doi.org/10.1145/2737182.2737187

[10] Arcelli D, Cortellessa V, Leva A. A library of modeling

components for adaptive queuing networks. Proceedings

of the 13th European Workshop on Performance

Engineering. Chios, GR, 2016.
https://doi.org/10.1007/978-3-319-46433-6_14

[11] Incerto E, Tribastone M, Trubiani C. Software

performance self-adaptation through efficient model

predictive control. 32nd IEEE/ACM International

Conference on Automated Software Engineering. Urbana,

IL, 2017. https://doi.org/10.1109/ASE.2017.8115660

[12] James G, Witten D, Hastie T, Tibshirani R. An

Introduction to Statistical Learning: With Applications in

R. Springer, 2014. https://doi.org/10.1007/978-1-4614-

7138-7

[13] Harman M, Afshin Mansouri S, Zhang Y. Search-based

software engineering: Trends, techniques and applications.

https://doi.org/10.1145/2568088.2568095
https://doi.org/10.1145/2347583.2347592
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/TSE.2017.2704579
https://doi.org/10.1145/2304696.2304716
https://doi.org/10.1002/047166880X
https://doi.org/10.1145/2737182.2737187
https://doi.org/10.1007/978-3-319-46433-6_14
https://doi.org/10.1109/ASE.2017.8115660
https://doi.org/10.1007/978-1-4614-7138-7
https://doi.org/10.1007/978-1-4614-7138-7

Davide Arcelli / Journal of Ubiquitous Systems & Pervasive Networks, 2 (2021) 27-35

34

ACM Computing Surveys 2012;45(1):11:1–11:61.
https://doi.org/10.1145/2379776.2379787

[14] Jung G, Joshi KR, Hiltunen MA, Schlichting RD, Pu C.

Generating adaptation policies for multi-tier applications

in consolidated server environments. Proceedings of the

5th International Conference on Autonomic Computing.

Chicago, IL, 2008. https://doi.org/10.1109/ICAC.2008.21

[15] Elkhodary A, Esfahani N, Malek S. Fusion: A framework

for engineering self-tuning self-adaptive software systems.

Proceedings of the 18th ACM SIGSOFT Symposium on

the Foundations of Software Engineering. Santa Fe New

Mexico, USA, 2010.
https://doi.org/10.1145/1882291.1882296

[16] Barati S, Bartha FA, Biswas S, Cartwright R, Duracz A,

Fussell DS, Hoffmann H, Imes C, Miller JE, Mishra N,

Arvind, Nguyen D, Palem KV, Pei Y, Pingali K, Sai R,

Wright A, Yang YH, Zhang S. Proteus: Language and

runtime support for self-adaptive software development.

IEEE Software 2019;36:73–82.
https://doi.org/10.1109/MS.2018.2884864

[17] Grassi V, Mirandola R, Randazzo E. Model-driven

assessment of qos-aware self-adaptation. In: Cheng BH,

de Lemos R, Giese H, Inverardi P, Magee J (Eds),

Software Engineering for Self-Adaptive Systems.

Springer-Verlag, 2009, pp. 201–222.
https://doi.org/10.1007/978-3-642-02161-9_11

[18] Becker M, Becker S, Meyer J. Simulizar: Design-time

modeling and performance analysis of self-adaptive

systems. In: Proceedings of Software Engineering 2013.

Aachen, DE, 2013.

[19] Calinescu R, Grunske L, Kwiatkowska M, Mirandola R,

Tamburrelli G. Dynamic qos management and

optimization in service-based systems. IEEE Trans. on

Software Eng. 2011;37:387–409.
https://doi.org/10.1109/TSE.2010.92

[20] Lung C, Zhang X, Rajeswaran P. Improving software

performance and reliability in a distributed and concurrent

environment with an architecture-based self-adaptive

framework. Int. J. of Systems and Software

2016;121:311–328.
https://doi.org/10.1016/j.jss.2016.06.102

[21] Kounev S, Brosig F, Huber N, Reussner RH. Towards

self-aware performance and resource management in

modern service-oriented systems. Proceedings of the 7th

IEEE International Conference on Services Computing.

Miami, FL, 2010. https://doi.org/10.1109/SCC.2010.94

[22] Arcelli D. A Multi-Objective Performance Optimization

Approach for Self-Adaptive Architectures. Proceedings of

the 14th European Conference on Software Architecture.

L’Aquila, IT, 2020. https://doi.org/10.1007/978-3-030-

58923-3_9

[23] Arcelli D. Exploiting Queuing Networks to Model and

Assess the Performance of Self-Adaptive Software

Systems: A Survey. Proceedings of the 11th International

Conference on Ambient Systems, Networks and

Technologies. Warsaw, PL, 2020.
https://doi.org/10.1016/j.procs.2020.03.108

[24] Franks G, Majumdar S, Neilson J, Petriu D, Rolia J,

Woodside M. Performance analysis of distributed server

systems. Proceedings of the 6th International Conference

on Software Quality, 1996.

[25] Puterman ML. Markov Decision Processes. Wiley, 1994.
https://doi.org/10.1002/9780470316887

[26] Reisig W. Petri nets: an introduction. Springer, 1985.
https://doi.org/10.1007/978-3-642-69968-9

[27] Epifani I, Ghezzi C, Mirandola R, Tamburrelli G. Model

evolution by run-time parameter adaptation. Proceedings

of the 31st International Conference on Software

Engineering. Vancouver, CA, 2009.

https://doi.org/10.1109/ICSE.2009.5070513

[28] Zhang X, Lung C, Franks G. Towards architecture-based

autonomic software performance engineering.

Proceedings of the 4th French-speaking Conference on

Software Architectures. Pau, FR, 2010.

[29] Arcelli D. Towards a Generalized Queuing Network

Model for Self-adaptive Software Systems. Proceedings of

the 8th International Conference on Model-Driven

Engineering and Software Development. Valletta, Malta,

2020. https://doi.org/10.5220/0009180304570464

[30] Batory D. Feature Models, Grammars, and Propositional

Formulas. Proceedings of the 9th International Conference

on Software Product Lines. Rennes, FR, 2005.
https://doi.org/10.1007/11554844_3

[31] Jain R. The art of computer systems performance analysis

- techniques for experimental design, measurement,

simulation, and modeling. Wiley, 1991.

[32] Becker S, Koziolek H, Reussner RH. The palladio

component model for model-driven performance

prediction. Int. J. of Systems and Software 2009;82:3–22.
https://doi.org/10.1016/j.jss.2008.03.066

[33] Becker S, Dencker T, Happe J. Model-driven generation

of performance prototypes. Proceedings of the SPEC

International Performance Evaluation Workshop.

Darmstadt, DE, 2008.

[34] Von Detten M, Heinzemann C, Platenius MC, Rieke J,

Travkin D, Hildebrandt S. Story Diagrams Syntax and

Semantics. Heinz Nixdorf Institute Tech Report tr-ri-12-

324, July 2012.

[35] Juric MB, Mathew B, Sarang P. Business Process

Execution Language for Web Services. Packt Publishing,

2004.

[36] Musa JD. Operational profiles in software-reliability

engineering. IEEE Software 1993;10:14–32.
https://doi.org/10.1109/52.199724

[37] Calinescu R, Kwiatkowska MZ. Using quantitative

analysis to implement autonomic IT systems. Proceedings

of the IEEE 31st International Conference on Software

Engineering. Vancouver, CA, 2009.
https://doi.org/10.1109/ICSE.2009.5070512

[38] Berger JO. Statistical Decision Theory and Bayesian

Analysis, 2nd edition. Springer, 1985.
https://doi.org/10.1007/978-1-4757-4286-2

[39] Kwiatkowska MZ, Norman G, Parker D. Probabilistic

symbolic model checking with PRISM: A hybrid

approach, Int. J. on Software Tools for Technology

Transfer 2004;6(2):128–142.
https://doi.org/10.1007/s10009-004-0140-2

[40] Grunske L. Specification patterns for probabilistic quality

properties. 30th International Conference on Software

https://doi.org/10.1145/2379776.2379787
https://doi.org/10.1109/ICAC.2008.21
https://doi.org/10.1145/1882291.1882296
https://doi.org/10.1109/MS.2018.2884864
https://doi.org/10.1007/978-3-642-02161-9_11
https://doi.org/10.1109/TSE.2010.92
https://doi.org/10.1016/j.jss.2016.06.102
https://doi.org/10.1109/SCC.2010.94
https://doi.org/10.1007/978-3-030-58923-3_9
https://doi.org/10.1007/978-3-030-58923-3_9
https://doi.org/10.1016/j.procs.2020.03.108
https://doi.org/10.1002/9780470316887
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1109/ICSE.2009.5070513
https://doi.org/10.5220/0009180304570464
https://doi.org/10.1007/11554844_3
https://doi.org/10.1016/j.jss.2008.03.066
https://doi.org/10.1109/52.199724
https://doi.org/10.1109/ICSE.2009.5070512
https://doi.org/10.1007/978-1-4757-4286-2
https://doi.org/10.1007/s10009-004-0140-2

Davide Arcelli / Journal of Ubiquitous Systems & Pervasive Networks, 2 (2021) 27-35

35

Engineering. Leipzig, DE, 2008.
https://doi.org/10.1145/1368088.1368094

[41] Calinescu R. General-purpose autonomic computing. In:

Zhang Y, Yang L, Denko M (Eds), Autonomic Computing

and Networking, Springer, 2009, pp. 3–30.
https://doi.org/10.1007/978-0-387-89828-5_1

[42] Welsh M, Gribble S, Brewer E, Culler D. A Design

Framework for Highly Concurrent Systems. UC Berkley

Tech Report UCB/CSD-00-1108, January 2000.

[43] Schmidt D, Stal M, Rohnert H, Buschmann F. Pattern-

Oriented Software Architecture, Patterns for Concurrent

and Networked Objects. Wiley, 2000.

[44] Curry HB. The Method of Steepest Descent for Non-linear

Minimization Problems. Quarterly of Applied

Mathematics 1944;2(3):258–261.
https://doi.org/10.1090/qam/10667

[45] Chekuri C, Khanna S. On multidimensional packing

problems. SIAM J. on Computing 2004;33(4):837–851.
https://doi.org/10.1137/S0097539799356265

[46] Coffman Jr EG, Galambos G, Martello S, Vigo D. Bin

Packing Approximation Algorithms: Combinatorial

Analysis. In: Du D-Z, Pardalos PM (Eds), Handbook of

Combinatorial Optimization. Kulwer, 1998, pp. 151–207.
https://doi.org/10.1007/978-1-4757-3023-4_3

[47] Shalev-Shwartz S, Ben-David S. Decision Trees In:

Understanding Machine Learning: From Theory to

Algorithms. Cambridge University Press, 2014, pp. 212–

218. https://doi.org/10.1017/CBO9781107298019.019

[48] Cecchet E, Chanda A, Elnikety S, Marguerite J,

Zwaenepoel W. Performance comparison of middleware

architectures for generating dynamic web content.

Proceedings of the 4th ACM/IFIP/USENIX International

Middleware Conference. Rio de Janeiro, BR, 2003.
https://doi.org/10.1007/3-540-44892-6_13

[49] Franks G, Maly P, Woodside M, Petriu DC, Hubbard A,

Mroz M. Layered Queueing Network Solver and

Simulator User Manual. Real-time and Distributed

Systems Lab, Carleton University, January 2013.

[50] Frank E, Hall MA, Holmes G, Kirkby R, Pfahringer B,

Witten IH, Trigg L. Weka-A Machine Learning

Workbench for Data Mining. In: Maimon O, Rokach L

(Eds), Data Mining and Knowledge Discovery Handbook

2nd edition. Springer, 2010, pp. 1269–1277.
https://doi.org/10.1007/978-0-387-09823-4_66

[51] Åström KJ, Hägglund T. Advanced Pid Control. ISA-The

Instrumentation, Systems, and Automation Society, 2006.

[52] Morin B, Barais O, Nain G, Jézéquel J. Taming

dynamically adaptive systems using models and aspects.

Proceedings of the 31st International Conference on

Software Engineering. Vancouver, CA, 2009.
https://doi.org/10.1109/ICSE.2009.5070514

[53] Fritzson P, Engelson V. Modelica — A unified object-

oriented language for system modeling and simulation.

Proceedings of the 12th European Conference on Object-

Oriented Programming. Brussels, BE, 1998.
https://doi.org/10.1007/BFb0054087

[54] García CE, Prett DM, Morari M. Model predictive

control: Theory and practice—a survey. Automatica

1989;25(3):335–348. https://doi.org/10.1016/0005-

1098(89)90002-2

[55] Abdelwahed S, Bai J, Su R, Kandasamy N. On the

application of predictive control techniques for adaptive

performance management of computing systems. IEEE

Trans. on Network and Serv. Manag. 2009;6(4):212–225.
https://doi.org/10.1109/TNSM.2009.04.090402

[56] Kurtz TG. Solutions of ordinary differential equations as

limits of pure Markov processes. Journal of Applied

Probability 1970;7(1):49–58.
https://doi.org/10.2307/3212147

[57] Achterberg T, Wunderling R. Mixed integer

programming: Analyzing 12 years of progress. In: Junger

M, Reinelt G (Eds), Facets of Combinatorial

Optimization, Springer, 2013, pp. 449–481.
https://doi.org/10.1007/978-3-642-38189-8_18

[58] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and

elitist multiobjective genetic algorithm: Nsga-ii. IEEE

Trans. on Evolutionary Computation 2002;6(2):182–197.
https://doi.org/10.1109/4235.996017

[59] Bertoli M, Casale G, Serazzi G. Jmt: performance

engineering tools for system modeling. SIGMETRICS

Performance Evaluation Review 2009;36:10–15.
https://doi.org/10.1145/1530873.1530877

[60] Arcelli D, Cortellessa V. Software model refactoring

based on performance analysis: better working on

software or performance side?. Proceedings of the 10th

International Workshop on Formal Engineering

Approaches to Software Components and Architecture.

Rome, IT, 2013. https://doi.org/10.4204/EPTCS.108.3

[61] Alhir SS. Extension Mechanisms. In: Guide to Applying

the UML. Springer Professional Computing, 2002, pp.

343–363. https://doi.org/10.1007/0-387-21513-1_10

https://doi.org/10.1145/1368088.1368094
https://doi.org/10.1007/978-0-387-89828-5_1
https://doi.org/10.1090/qam/10667
https://doi.org/10.1137/S0097539799356265
https://doi.org/10.1007/978-1-4757-3023-4_3
https://doi.org/10.1017/CBO9781107298019.019
https://doi.org/10.1007/3-540-44892-6_13
https://doi.org/10.1007/978-0-387-09823-4_66
https://doi.org/10.1109/ICSE.2009.5070514
https://doi.org/10.1007/BFb0054087
https://doi.org/10.1016/0005-1098(89)90002-2
https://doi.org/10.1016/0005-1098(89)90002-2
https://doi.org/10.1109/TNSM.2009.04.090402
https://doi.org/10.2307/3212147
https://doi.org/10.1007/978-3-642-38189-8_18
https://doi.org/10.1109/4235.996017
https://doi.org/10.1145/1530873.1530877
https://doi.org/10.4204/EPTCS.108.3
https://doi.org/10.1007/0-387-21513-1_10

