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Abstract 

Enabling self-adaptation within hardware/software systems is a complex task, mainly due to environment uncertainty 

that has to be faced while the system is providing its functionalities. Besides, non-functional goals that have to be met by 

the system may be introduced, defining Quality-of-Service (QoS) requirements which drive the adaptation.     

This paper enhances a previous study which surveyed the literature with respect to performance-driven self-adaptation, 

supported by the Queuing Network paradigm. The seven approaches identified in previous work are detailed in this 

paper based on a well-defined taxonomy deriving from the former’s classification scheme and spanning over different 

dimensions, with particular emphasis on the way adaptation mechanisms are introduced, e.g. available knobs, non-

functional goals, sources of uncertainty. Based on such taxonomy, internal characteristics of those approaches are 

described, as well as commonalities and differences, aimed at providing a detailed view of the current state-of-art in the 

context of performance-driven self-adaptation supported by the Queuing Network paradigm. 

 

Keywords: Self-Adaptive Systems, Software Architecture, Autonomous Systems; Software Performance Engineering; 
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1. Introduction 

Recent advancements in IT technologies have brought to a 

wide plethora of application domains for modern 

hardware/software systems. Many of those envision the latter 

operating in dynamic environments with different sources of 

uncertainty that they have to face while providing their 

functionalities [1, 2]. 

To this aim, system architectures have switched to a more 

“elastic” paradigm, which allowed to develop the so-called 

Self-adaptive Systems (SaSs) [3].  

A SaS is composed by a managed and a managing subsystem: 

the former comprises sensing and actuating components which 

allow to perceive and affect the environment, respectively; the 

latter subsystem, instead, includes controllers that exploit 

sensed data in order to devise adaptation of system’s behavior 

resulting into actuation. 

Hence, the two subsystems are coupled each other and such 

coupling often results into MAPE-K feedback loop(s) [4], i.e. a 

Knowledge (K)-based architectural model that divides the 

process of adaptation into four phases: Monitor (M), Analyze 

(A), Plan (P), and Execute (E), as illustrated in the typical 

reference model for self-adaptation of Fig. 1. 

 

 

 
Fig. 1. Reference model for self-adaptation. 

 

In this domain, non-functional goals have been taken into 

account by many approaches. In particular, performance has 

emerged as a top concern, as highlighted by several literature 

reviews that have been conducted in the last decade [3, 5, 6]. 

Modeling and analysis notations have been introduced in order 

to represent SaSs and assess their performance. Besides, 

several techniques have been exploited in order to optimize 

non-functional attributes of such systems. 
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For example, Control Theory (CT) [7] – i.e. a mathematical 

approach to properly control continuously operating dynamical 
systems – allows to introduce (global or local) MAPE-K 

feedback controllers within Queuing Networks (QNs) [8], 

aimed at providing formal performance guarantees [9, 10, 11]; 

As further examples, Machine Learning (ML) [12] – i.e. an 

approach that builds mathematical models which allow to make 

predictions or decisions without being explicitly programmed 

to perform the task – and Search-space Exploration [13] – i.e. 

metaheuristics looking for near-optimal solutions to 

optimization problems – can be used to automatically reason 

and decide about adaptation, driven by performance 

requirements [14, 15, 16, 17, 18, 19, 20, 21, 22].  

The huge number of dimensions over which such a big arena 

spans, makes the domain investigation very hard and subject to 

entropy. For this reason, in a recent survey [23] I have focused 

onto a particular non-functional aspect of SaSs, i.e. 

performance. More in detail, in the wide plethora of available 

performance notations – e.g. QNs [8, 24], Markov models [25], 

Petri-nets [26], etc. – I have restricted such literature study to 

QNs, which represent one of the most addressed performance 

modeling and analysis paradigms [3, 5, 6]. 

Seven approaches enabling performance-driven self-adaptation 

of SaSs by exploiting QNs have been identified through 

previous investigation, whose main characteristics have been 

preliminarily pointed out and discussed.  

This paper enhances the previously published survey [23] by 

going into details of the adaptation mechanisms introduced by 

those approaches. First, a well-defined taxonomy is presented, 

enhancing the classification scheme of the previous survey. 

Then, the considered approaches are characterized based on the 

presented taxonomy and such characterization is finally used to 

detail the approaches and highlight commonalities and 

differences, in the light of their latest advancements.  

As a result, this work contributes with the previous one to 

provide a detailed view of the current state-of-art in the context 

of performance-driven self-adaptation supported by the QN 

paradigm.  

The paper is structured as follows: Sec. 2 describes the 

knowledge base including of surveyed approaches (Sec. 2.1) 

and presents a taxonomy for their classification (Sec. 2.2). On 

these basis, Sec. 3 provides the classification of the considered 

approaches and then describes and compares them (Secc. 3.1 

and 3.2, respectively). Results are summarized in Sec. 4, whilst 

Sec. 5 concludes the paper. 

2. Methodology 

2.1. Identifying the Approaches for the Knowledge Base 

 

This survey grounds on the knowledge base from my previous 

work [23], which consists of a number of literature studies 

addressing performance concerns of SaSs while spanning over 

several other dimensions.  

In particular, I have considered two surveys, one by Weyns et 

al. [3] and one by Becker et al.  [6], which reported the state-

of-art on addressing non-functional concerns by means of 

formal notations and MDE, respectively, until 2012. While 

doing this, I have also taken into account possible 

evolutions/extensions of the considered approaches that might 

have introduced new features or improved the existing ones. 

Additionally, I have considered a more recent systematic study 

by Shevtsov et al. [5], which reviewed the literature with 

respect to approaches exploiting CT to introduce self-

adaptation and provide formal non-functional guarantees. 

Among the approaches included in those three studies, five 

exploit the QN paradigm to address performance modeling and 

analysis, namely SimuLizar [18], QoSMOS [19, 27], SAFCA 

[20, 28], ICAC [14] and Adaptive Queuing Networks (AQNs) 

[9, 10] 1 . Furthermore, by additional search performed on 

Google Scholar 2 and Scopus 3, two more recent approaches 

have been identified, i.e. the ones from Incerto et al. [11] and 

the other one named SMAPEA QNs [22, 29] 4.  

2.2. A Taxonomy for Classifying the Surveyed Approaches 

 

In this section preparatory terms which can facilitate the 

comparison of different Performance Engineering approaches 

are introduced. To this aim, the different classification schemes 

introduced by the three systematic studies in the knowledge 

base, i.e. [3], [6] and [5], are taken as inspiration. As a result, 

the feature diagram [30] in Fig. 2 is devised, defining the 

following top-level categories of interest for Performance 

Engineering of Self-adaptive Systems (PESaSs), which are 

detailed in Table 1: 

• Meta-data: This category reports the reference published 

papers and possible literature studies that have included 

the approach. 

• System architecture: This category identifies the type of 

applications addressed by the approach and the exploited 

modeling language for representing the system. 

• Performance analysis: This category characterizes the 

approaches with respect to the adopted (QN-based) 

performance analysis notations and methods, as well as 

additional artifacts and possible transformations which 

are needed in order to support the analysis. 

• Adaptation: This category characterizes the adaptation 

mechanisms enabled by the approaches, based on typical 

aspects that have to be considered while introducing 

them, e.g. goals, knobs, inputs that can be monitored but 

not affected, etc. 

• Time of application: This category is aimed at assessing 

if an approach can be applied at design- and/or run-time. 

• Applicability: This category characterizes the approaches 

in terms of available tool-support and the provided 

validation. 

 

 
Fig. 2. Feature diagram representing the top-level categories 

for Performance Engineering of Self-adaptive Systems. 

 
1 Since the approach in [14] is unnamed, ICAC acronym is introduced 

from its publication venue, i.e. the International Conference on 
Autonomic Computing. 
2 https://scholar.google.it/  
3 https://www.scopus.com/  
4 Since the approach in [11] is unnamed, EMPC acronym is introduced 

from its control technique, i.e. Efficient Model Predictive Control. 

https://scholar.google.it/
https://www.scopus.com/
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3. Classification 

Table 2 classifies the seven considered approaches based on 

the classification scheme devised in Table 1 and described in 

Section 2.2. In the following sub-sections, the surveyed 

approaches are described by looking at the columns of Table 2 

(Sec. 3.1), whilst their comparison basically corresponds to the 

description of the rows of Table 2 (Sec. 3.2).  

3.1. Description of the Surveyed Approaches 

 

SimuLizar [18] grounds on the Palladio Component Model 

(PCM) [32] and extends it with a self-adaptation viewpoint and 

a simulation engine (namely ProtoCom [33]). A QN model is 

automatically derived from the PCM model by means of a 

model-to-model (M2M) transformation. Such QN model is 

simulated in order to obtain system response time. Self-

adaptation viewpoints are specified in terms of Story Diagrams 

[34] exploiting tags (stereotypes) such as <<assign>>, 

<<timing>> and <<++>>, which are manually specified for 

Table 1. Taxonomy for Performance Engineering of Self-adaptive Systems. 

Classification dimension Description 

Meta-data 

References This reports the reference papers for the corresponding approach. 

Literature studies Systematic studies and surveys where the approach has been identified. 

System architecture 

Architecture paradigm The considered approaches can be based on components, services, concurrent architectures or multi-tier applications. 

Modeling notation This reports the modeling language adopted to represent the system architecture and to enable self-adaptation. It may 
coincide with performance analysis modeling notation. 

Performance analysis 

Modeling notation This reports the language adopted to represent a performance model for the self-adaptive system.  As QNs represent 

the main foundational paradigm of our approach, we restrict to approaches exploiting QNs [8] or a particular 
extension of the latter, namely Layered Queuing Networks (LQNs) [24], as performance analysis model. 

Method The examined approaches may adopt performance models that can be solved analytically or by simulation [31]. 

Additional models This reports whether pivotal representations of the system are exploited for performance analysis aims. 

Transformation Pivotal representations of the system may be derived from or used to generate – automatically, semi-automatically or 
manually – analysis models. To this aim, model-to-model or model-to-text transformations can be exploited. The 

provisioning of such transformations represents a classification criterion. 

Adaptation 

Type Conforming to Shevtsov et al. [5], four different types of adaptation can be devised: 
1. Component adaptation “refers to changes at the level of software components, such as the load of services 

and the degree of parallelism that components process requests”. 

2. Parametric adaptation “refers to changing the values of variables of the application software or middleware 
services. These types of actuators are typically domain-specific; examples are the degree of video 

compression and the length of a queue with pending requests that need to be processed”. 
3. Mode adaptation “refers to a variation in the mode of operation, which can be either mode change or mode 

switch. An example of a mode change is an increment in the quality of content that is being served by a video 

application; an example of mode switch is an alteration of the buffering schema of a video application”. 
4. Architecture reconfiguration “refers to a run-time adaptation of the architectural structure or behavior of the 

application”, which basically means selecting an (optimal) alternative system architecture and actually re-

arranging the current one conforming to implement the former. 

Controlled variables 
(Goal) 

This category corresponds to the non-functional indices that compose the “fitness function”, i.e. the goal defined by 
non-functional requirements. For example, response times, throughputs, utilizations, etc. 

Control variables 

(Knobs) 

This category reports “what is adapted”, i.e. the predefined knobs that allow to tune the system model in order to 

perform adaptation. For example, concurrency level, CPU capacity allocation, service quality levels, routing 
probabilities, component service rates, etc. 

Disturbances This category corresponds to system parameters that may be observed but not influenced. Hence, they represent what 

the system has to face by self-adaptation in order to satisfy the predefined goals. 

Means Self-adaptation may be enabled by means of different techniques, e.g. Machine Learning, Control Theory, etc. 

Pro-/Reactive As from Becker et al. [6], an adaptation strategy is reactive if the system triggers its self-adaptation when a goal is 

already violated. If the system predicts that it might miss a goal sometime in the near future and hence adapts itself 

preventively, the adaptation strategy is proactive. 

Time of application 

Design-/Run-time This category distinguishes between approaches applicable at design-time and/or run-time. Approaches belonging to 

the former category may be exploited, e.g., to identify proper adaptation strategies; whereas, approaches from the 

latter category may, e.g., “measure the environment” aiming at predicting system’s performance trend. 

Applicability 

MDE tools This category includes features for modeling the system and/or transform the system model into analysis models.  

Analysis tools This category represents whether the non-functional analysis is supported by existing and/or ad-hoc tools. 

Optimization tools The availability of tools for optimizing the adaptation represents a discriminant for the examined approaches. 

Proof-of-concept Approaches can be evaluated in terms of formal correctness (i.e. formal demonstrations are provided), empirical 
correctness (i.e. the system behaves as expected under controlled conditions) or realism (i.e. input/output parameters 

of the analysis model are similar to the ones of the actual system implementation).  

Case study The approach validity is illustrated based on a real system design or implementation in a certain (reported) domain. 
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elements involved in adaptation. The goal is to analyze system 

response time in the transient phase, after the (reactive) 

adaptation, under different workload intensities.  

SimuLizar represents a Model-Driven performance modeling 

and analysis tool that can be applied at design-time, without 

any kind of optimization for the adaptation mechanism. Its 

empirical correctness has been proven with respect to a load 

balancing case study and a prototypal implementation has been 

developed, aimed at demonstrating its realism.  

QoSMOS [19, 27] is a framework which enables the dynamic 

selection of services to face run-time changes, in the context of 

service-based systems. The latter are thus modeled in BPEL 

[35] and automatically transformed (in some unspecified way) 

into QN and Markov models, for performance and reliability 

purposes, respectively. 

Proactive self-adaptation is in terms of architecture 

reconfiguration that, in this context, consists of dynamic 

service selection and resource allocation. The goal is to 

optimize an arbitrary QoS utility function which involves both 

performance and reliability requirements, e.g. system response 

time, system failure probability, etc., aimed at facing the 

operational profile [36], which specifies the workload and 

service failure rates. Such an optimization grounds on an 

algorithm which performs exhaustive search [37], whilst 

Bayesian estimation [38] is exploited in order to parameterize 

the system model with realistic values taken from the actual 

implementation. This latter feature allowed to prove approach 

realism, beside its empirical correctness. 

QoSMOS is implemented a set of existing tools working in 

synergy, i.e. KAMI [27], PRISM [39], ProProST [40] and 

GPAC [41], and it has been validated with respect to a case 

study represented by a Tele Assistance system.  

SAFCA [20, 28] enables self-adaptation of distributed and 

concurrent software architectures, by switching among 

predefined queuing patterns – namely Dynamic Thread 

Creation [42], HS/HA and Leader-followers [43] – at run-time, 

in the context of Layered QNs. The goal is to reach acceptable 

system response time and decrease packet loss ratio, while 

maximizing the utilization of software resources. To this aim, 

the system has to react to workload bursts, excessive queue 

components queue length and failure occurrences. Hence, 

queue lengths are monitored for performance, whilst the ratio 

between arrival rate and system throughput is considered for 

reliability; based on predefined thresholds, the adaptation is 

triggered by SAFCA. Although empirical correctness and 

realism have been proven, no tools are publicly available to the 

community and no case studies have been presented.  

ICAC [14] generates rulesets representing adaptation policies 

for multi-tier architectures modeled as Layered QNs.  

Self-adaptation takes the form of architectural reconfiguration 

taking place through knobs consisting of component 

replication level, CPU capacity and components allocation. 

The former two knobs are tuned by exploiting a gradient-based 

search algorithm [44], whilst component allocation is 

formulated as a bin-packing problem [45] which is faced by 

means of the n log n time first-fit decreasing algorithm [46]. 

An ad-hoc configuration optimizer is able to produce an 

optimal configuration for a given workload.  

The configuration optimizer is used by a decision-tree learner 

[47] (i.e. a ML technique) at design-time, in order to obtain 

optimal component replication levels and CPU capacities for 

different workload intensities. The obtained configurations 

allow the decision-tree learner to generate the rulesets aimed at 

optimizing an arbitrary QoS utility function 5. 

 
5 Notice that the only QoS utility function considered so far is system 

mean response time.   

The approach has been validated with respect to RUBiS 

auction system [48], demonstrating that the response times 

predicted by the model correspond well with the measured 

response times (realism) and that the configurations carried out 

by the configuration optimizer are close to optimal, as well as 

the rulesets generated by the decision-tree learner (empirical 

correctness).  

Concerning tool support, LQNs are solved analytically by 

means of the LQNS tool [49]. Moreover, the Weka tool [50], 

which has brought authors to adopt a decision-tree learner, 

might be used to investigate different ML techniques. 

AQNs [9, 10] represent a particular family of QNs that allows 

to equip system components (i.e. service centers) with local 

Proportional Integral Controllers (PIDs) [51] that can adapt 

component’s service quality level over a discrete set of 

predefined service demands, based on the queue length, thus 

resulting into an adaptation based on mode change 6. The goal 

is to maintain components’ queue lengths at predefined values 

– namely setpoints – representing (local) performance 

requirements, by reacting to workload fluctuations and 

unpredicted changes of the operational profile (i.e. the 

probability that a processed request re-enters the system). 

AQNs have been implemented into the Modelica framework 

[53], which provides CT facilities and a simulation engine. 

Furthermore, a library of predefined modules has been released 

to ease system modeling and thus AQNs adoption by the 

community [10]. 

Finally, AQNs correctness has been proven both formally and 

empirically, with respect to the design of a system which 

provides itineraries with different level of details (service 

quality levels).  

EMPC [11] exploits an Efficient Model Predictive Control 

technique [54] – namely receding horizon [55] – to enable 

proactive performance-driven self-adaptation mechanisms 

within QNs representing component-based systems. To this 

aim, formal models are exploited at run-time, such as Ordinary 

Differential Equations (ODEs) [56] and Mixed Integer 

Programming (MIP) [57], which allow to synthesize 

controllers implementing optimal adaptation strategies in terms 

of routing probabilities, components service rates and 

concurrency level (i.e. knobs). Model-to-text (M2T) 

transformation is exploited in order to obtain formal 

specifications from QN models.  

The goal is the optimal fulfillment of performance 

requirements for the indices of interest (e.g. components queue 

lengths and/or utilization, system throughput and/or response 

time) through proactive prediction of workload fluctuations 

and service degradation.  

The approach has been extensively validated with respect to a 

prototypal implementation of a load balancer. Correctness of 

formal specifications has been demonstrated, as well as the 

empirical correctness and the suitability of the QN model in 

predicting the trends of the real system (realism). Furthermore, 

the scalability of the approach has been evaluated and a 

comparison of the MIP formulation to an equivalent Markov 

model has been provided. 

The well-known CPLEX tool can be exploited for solving MIP 

optimization problems, however no further tool support is 

available, as the approach heavily grounds on the development 

of scripts to execute.   

SMAPEA QNs [22, 29] represent a novel family of QN models 

which allows to model and assess the performance of 

component-based SaSs [29]. Advanced modeling constructs 

 
6 The concept of system mode is known since more than a decade in 
the context of dynamic adaptive systems and has been used to devise 

different run-time configurations among which the system may transit 

for self-adaptation [52]. 
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such as fork/join and class-switches are exploited in order to 

suitably represent the managed and managing subsystems of 

SaSs, as well as the occurring intra- and inter-dynamics.  

The SaS is assumed to be able to operate based on different 

(mutually exclusive) modes – e.g. normal and critical – thus 

devising a mode profile [52]. This enables mode-switch 

adaptation in the transient phase, by considering mode-profile 

probabilities as knobs.  

A further dimension for adaptation in SMAPEA QNs has been 

enabled recently [22], by introducing the Controller Selection 

Policy (CSP) optimization problem, which concerns the 

routing probabilities defining how the requests are forwarded 

to the controllers within the managing subsystem. The goal is 

to find routing probabilities bringing to the optimal system’s 

response time (in the transient phase) for each mode. To this 

aim, Search-Based Multi-Objective Optimization [13] is 

exploited, as a custom NSGA-II genetic algorithm [58].  
Empirical correctness of SMAPEA QNs and the related 

optimization approach has been proven with respect to a 

realistic SaS for emergency response. 
SMAPEA QNs can be developed by means of JSimGraph from 

the JMT tool-suite [59]; the CSP problem can be solved by 

exploiting a publicly available tool, namely smapeaqn.moo. 

3.2. Comparison of the Surveyed Approaches 

 
All the considered approaches exploit the QN paradigm for 

performance modeling and analysis notation, in the form of 

classic QNs [8] or their specializations (ad-hoc or standard, 

such as LQNs [24]). This characteristic represents the 

fundamental inclusion criteria in the knowledge base and, 

consequently, it defines the focus of this paper.  

In most of the approaches, the architectural notation coincides 

with the performance notation, hence adaptation mechanisms 

are directly enabled within the QNs, possibly involving M2T 

transformation to solve an optimization problem (EMPC). 

Instead, the remaining approaches – i.e. SimuLizar and 

QoSMOS – exploit a different modeling notation for 

representing SaS architecture – i.e. PCM [32] and BPEL [35], 

respectively. M2M transformation is exploited to 

(automatically or manually) obtain QNs from architecture 

models devising different system configurations. Hence, QNs 

usage is limited to performance indices estimation, while 

adaptation takes place at the architectural model side.  

Working at this side allows to address component-based 

architectures (SimuLizar) as well as architectural paradigms at 

a higher level of abstraction, e.g. service-based (QoSMOS). 

Approaches exploiting classical QNs as architectural and 

performance notation address component-based architectures, 

whilst the ones exploiting LQNs focus on concurrent (SAFCA) 

and multi-tier (ICAC) architectures. 

A common characteristic of approaches relying on QN 

simulation rather than analytic resolution is that they are 

applied at design-time. Instead, proactive adaptation is 

addressed at run-time and QNs are solved analytically, as 

simulation might take too long in contexts where QoS 

requirements must be fulfilled while the SaS is running.  

The architectural notation affects the adaptation mechanisms 

that can be enabled, especially in terms of modifiable knobs 

[60]. For example, SimuLizar, which makes extensive use of 

MDE, grounds on stereotypes and tagged values of a UML-

like profiling mechanism [61] to specify adaptation conditions 

and the corresponding architecture model changes.  

Instead, approaches directly on QNs tend to enable adaptation 

of the QN stations’ service demands, in terms of CPU capacity 

allocation (ICAC), service quality levels (AQNs) or service 

rates (EMPC). However, other knobs at component level are 

devised by those approaches, in order to regulate concurrency 

(EMPC), replicas and their placement (ICAC), at run-time. 

Moreover, as QNs are stochastic models, some probabilities 

can represent knobs, such as routing (EMPC, SMAPEA QNs, 

SimuLizar) and mode-switching (SMAPEA QNs) probabilities. 

Commonalities can be observed concerning the adaptation 

goals the system has to reach and the source of uncertainty it 

has to deal with. 

Workload variations are considered by all the approaches as a 

primary source of uncertainty. In addition, SAFCA considers 

components queue lengths, EMPC considers hardware 
degradation, while AQNs and SMAPEA QNs involve aspects 

related to the system’s operational profile – i.e. probability for 

a request to re-enter the system after being served (AQNs) and 
mode-switching probabilities (SMAPEA QNs). Furthermore, 

approaches addressing performance and reliability consider 

additional sources of uncertainty that are component failure 

rates (QoSMOS) and occurrences (SAFCA). 

In all the approaches except AQNs, system response time (RT) 

represents an adaptation goal: in some cases, it is the only goal 

(SimuLizar, SMAPEA QNs); in other cases, it can be 

considered in conjunction to additional performance (ICAC, 

EMPC) or reliability (QoSMOS, SAFCA) indices. Among the 

former indices, requirements on components queue lengths are 

defined in several approaches, i.e. QoSMOS, EMPC and 

AQNs. 

Goals are achieved by means of some “intelligence” that 

optimizes adaptation. Search-based techniques are exploited by 
QoSMOS (exhaustive search algorithms [37]), SMAPEA QNs 

(genetic algorithms [58]) and ICAC (gradient-based search 

[44], in conjunction with decision-tree learning [47]).  

Control-based techniques seem particularly suitable to address 

requirements on queue lengths, as demonstrated by AQNs – 

through Proportional Integral Controllers (PIDs) [51] – and 

EMPC [54] – through receding horizon [55] in conjunction 

with MIP [57]. However, ad-hoc techniques can be also 

developed to this aim, like SAFCA-Q and SAFCA-R. 

All the approaches validate empirical correctness and most of 

them – especially the ones applicable at run-time – prove 

realism with respect to an actual SaS implementation (e.g. 

QoSMOS validates Bayesian estimation [38] for model 

parameterization) – not provided by AQNs and SMAPEA QNs. 

Furthermore, approaches relying on Control Theory techniques 

– i.e. ANQs and EMPC – prove the formal correctness of the 

latter. Evaluation is provided with respect to a case study by all 

the approaches except SAFCA, which is limited to a proof-of-

concepts of the proposed queuing patterns. For this reason, 

SAFCA does not provide any tool support, which is instead 

provided by other approaches in different forms and at 

different extents. In particular, QoSMOS, ICAC SimuLizar 

and SMAPEA QNs are supported by publicly available tools: 

QoSMOS is a tool chain involving KAMI [27], PRISM [39], 

ProProST [40] and GPAC [41] for the MAPE loop at run-time; 

ICAC exploits the LQNS solver [49] for performance analysis 

and the Weka tool [50] for optimization purposes; SimuLizar 

uses PCM models [32] and story diagrams [34] for modeling 
and the ProtoCom engine [33] for analysis; SMAPEA QNs are 

entirely supported by JSimGraph from JMT tool-suite [59] for 

performance modeling and analysis and provides a multi-

objective optimization tool for the CSP problem. 

No particular tools are explicitly devised to apply EMPC, as it 

envisions the development of Python scripts to be executed at 

run-time. However, the CPLEX tool can be exploited to solve 

MIP formulation. Finally, differently from other approaches, 

AQNs have been developed within the Modelica framework 

from scratch, resulting into a library of modeling components 

that can be used to build system representations. 
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Table 2. Classification of the surveyed approaches.  

Category SimuLizar QoSMOS SAFCA ICAC AQNs EMPC SMAPEA QNs 

Meta-data 

References [18] [19], [27] [20], [28] [14] [9], [10] [11] [22], [29] 

Literature studies [6] [6], [3] [6] [3] [5] - - 

System Architecture 

Architecture paradigm Component-

based 

Service-

based 

Concurrent Multi-tier Component

-based 

Component-

based 

Component-based 

Modeling notation PCM BPEL LQN LQN QN QN QN 

Performance analysis 

Modeling notation QN QN LQN LQN QN QN QN 

Method Simulative Analytical Analytical Analytical Simulative Analytical Simulative 

Additional models No Markov 

Models 

No No No ODE, 

MIP 

No 

Transformation M2M Unspecified No No No M2T No 

Adaptation 

Type Arch. 

reconfig. 

Arch. 

reconfig. 

Arch. 

reconfig. 

Arch. 

reconfig. 

Mode-

change 

Comp./Par. 

change 

Mode-switch,  

Goals System RT QoS utility 

function  
(Fail. Prob., 

Comp. 

queue len., 
System RT) 

System RT, 

Packet loss 
ratio, 

Sw resource 

utils,  

QoS utility 

function 
(System RT) 

Component 

queue 
lengths 

Component 

queue 
lengths, 

Throughput, 

Utilizations, 
System RT) 

System modes’ 

RTs 

Knobs Elements 

tagged with 
<<assign>>, 

<<timing>> 

or <<++>> 
stereotypes 

Service 

selection, 
CPU 

capacity 

allocation 

Queue 

patterns 
(HS/HA, 

Leader-

followers, 
Dynamic 

Thread 

Creation) 

Component 

replication 
level, CPU 

capacity 

allocation,  
Components 

placement 

Comp. 

service 
quality 

levels 

Routing 

probabilities, 
Comp. 

service rates, 

Concurrency 
level 

Mode-switching 

probabilities, 
Controller 

Selection Policies 

Sources of uncertainty Workload 

variations 

Operational 

model 

(Service 
failure 

rates, 

Workload 
variations) 

Component 

queue 

lengths, 
Workload 

variations, 

Failure 
occurrence 

Workload 

variations 

Workload 

variations, 

Jobs exit 
probability 

Workload 

variations, 

Hardware 
degradation 

Workload 

variations, 

Mode-switching 
probabilities 

Means Story 

diagrams 

Bayesian 

estimation 

(params. 
estimation), 

Exhaustive 

search 
algorithms 

Thresholds on 

queue lengths 

(SAFCA-Q), 
Arrival rate 

Vs System 

throughput 
(SAFCA-R) 

Decision 

trees, 

Gradient-
based search 

Prop. 

Integral 

Controllers 

Receding 

horizon, 

Mixed Integer 
Programming 

Mode profiling, 

Genetic algorithms 

Pro-/Reactive reactive proactive reactive reactive reactive proactive both 

Time of application 

Design-/Run-time design-time run-time run-time design-time design-time run-time both 

Applicability 

MDE tools PCM KAMI, 

PRISM, 
GPAC 

No No Modelica No JSimGraph 

Analysis tools ProtoCom PRISM, 

ProProST 

No LQNS Modelica No JMT 

Optimization tools No GPAC No Weka Modelica CPLEX smapeaqn.moo 

Proof-of-concept Empirical 

correctness, 

Realism 
(prototypal) 

Empirical 

correctness, 

Realism 

Empirical 

correctness, 

Realism 

Empirical 

correctness, 

Realism 

Formal 

correctness, 

Empirical 
correctness 

Formal 

correctness, 

Empirical 
correctness, 

Realism 

(prototypal) 

Empirical 

correctness 

Case study Load 
balancing 

Tele 
Assistance 

No RUBiS Itineraries 
provision 

Load 
balancing 

Emergency 
handling 
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4. Lessons Learned 

The following key-points summarize the main findings 

resulting from this literature study. 

• System response time is the most addressed 

performance metric. 

• Typically, non-functional goals must be fulfilled while 

facing workload variations. 

• Reactive adaptation is usually addressed at design-time 

by simulation, whilst proactiveness is typically 

addressed at run-time by analytic resolution. In fact, 

managing simulation overhead while addressing run-

time adaptation might be costly.  

• MDE can provide useful support for performance 

modeling and analysis of SaSs, however it seems to be 

particularly suitable at design-time only. 

• Control Theory can be successfully applied to provide 

formal guarantees by introducing global or local 

controllers. 

• Optimization techniques such as Machine Learning, 

Search-Space Exploration and Mixed Integer 

Programming, can be exploited in order to optimize a 

fitness function involving performance indices. 

• Empirical validation with respect to a case study is the 

basic form of evaluation which is typically provided. 

Besides, exploiting control-based techniques implies a 

need for formal validation, which represents an added 

value. 

• Actual system implementations are likely used in order 

to parameterize analysis models in a realistic way 

and/or to compare analysis results to measurements 

from the running system. 

• The availability of modeling and analysis tools, as well 

as benchmark systems implementations is crucial for 

the adoption of any approach for self-adaptation. 

Relying on existing widespread tools and system 

implementations represents a valuable choice, as ad-

hoc development can be very costly. 

5. Conclusion 

In this paper, I have extended previous work [ANT2020] 

which surveyed the literature with respect to approaches 

enabling performance-driven self-adaptation supported by the 

Queuing Network paradigm. The classification scheme that 

have been previously introduced has been revised in order to 

carry out a taxonomy which allowed to detail the considered 

approaches spanning among different dimensions, with 

particular emphasis on the ways adaptation mechanisms that 

have been introduced and their non-functional goals.  

Internal characteristics of those approaches have been 

described, as well as their commonalities and differences, 

aimed at clarifying the state-of-art in addressing self-adaptation 

by exploiting QNs. Hence, this work can be used to get a 

detailed view of the current state-of-art in this context. 
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