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Abstract 
This paper proposes an efficient scheme to track the time variant channel induced by multipath fading wireless Multiple-
Input Multiple-Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) system in mobility environment 
with the presence of Gaussian noise. The estimation of the time varying multipath fading channel is performed by using 
a nonlinear channel estimator based on a complex Multiple Support Vector Machines Regression (M-SVR) which is 
developed and applied to MIMO Long Term Evolution (LTE) Downlink with Alamouti coding. The obtained results 
confirm the effectiveness of the proposed technique to track the fading channel compared to the conventional Least 
Squares (LS), Minimum Mean Squares Error (MMSE) and Decision Feedback methods. 
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1. Introduction 

Multiple-Input Multiple-Output (MIMO) systems have 
attracted the interest of many researchers because of which 
have been proposed for increasing reliability of the wireless 
systems as well as communication capacity. Orthogonal 
Frequency Division Multiplexing (OFDM) technology avoids 
channel multipath effect by converting the wideband frequency 
selective channel into a set of narrow band flat subcarrier. The 
modulated symbol rate on each subcarrier is lower in 
comparison to the channel delay spread, thus the intersymbol 
interference (ISI) can be prevented. Therefore, the combination 
of MIMO and OFDM approaches (MIMO-OFDM) is an 
attractive technique for the wireless cellular systems especially 
over a fading channel. 

 
In MIMO-OFDM systems, channel estimation task is very 

important to the coherent detection especially in the presence 
of Gaussian noise. Therefore, many channel estimation 
techniques have been proposed for MIMO-OFDM systems in 
the literature. The channel estimation technique used in this 
paper is based on the M-SVR (Multiple Support Vector 
Machine Regression) which training sequences are placed in 
the OFDM symbols to obtain the transmission environment 
parameters. 

Indeed, the principle of the proposed nonlinear complex 
M-SVR algorithm is to exploit the information provided by the 

pilot signals to estimate the channel frequency response. Thus, 
the proposed algorithm is developed in terms of the RBF 
(Radial Basis Function) kernel and applied to LTE (Long Term 
Evolution) Downlink multipath fading channel.  

  
Our objective in this work is to implement a MIMO-

OFDM semi-blind channel estimator using complex M-SVR.  
Firstly, the method makes use of the reference symbols to 
estimate the channel impulse response. Then, the complex M-
SVR technique is applied to track the time varying multipath 
channel for all data symbols. 

 
This paper is organized as follows. We present a related work 
in section 2. Section 3 briefly introduces the MIMO-OFDM 
system. In section 4, a semi-blind MIMO-OFDM channel 
estimator based on the nonlinear complex M-SVR is provided. 
In section 5, we make some computer simulation results. 
Finally, section 6 concludes the paper. 

2. Related Work 

All the use of SVM has already been proposed to solve a 
variety of signal processing and digital communication 
problems, such that channel estimation by linear SVM in 
SISO-OFDM system which is presented in [1]. 

This study is specifically adapted to a pilot-based OFDM 
signal in a flat-fading channel and uses the block-type pilot 
structure. In this type, pilot tones are inserted into all 
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subcarriers of pilot symbols with a period in time for channel 
estimation. This block-type pilot arrangement is suitable for 
slow fading channels. In fact, [1] consider a packet-based 
transmission, where each packet consists of a header at the 
beginning of the packet with a known training sequence or 
preamble to carry out channel estimation, followed by a certain 
number of OFDM data symbols. At the preamble, there are a 
number of OFDM symbols with a fixed number of pilot 
subcarriers in order to estimate the channel coefficients at pilot 
positions and then perform interpolation of the channel over all 
the OFDM symbols in the packet.  

However, in time varying channels, block-type pilot 
arrangement is not efficient and comb-type pilot arrangement is 
suitable especially in mobility environments.  

On the other hand, in [1], the channel's frequency 
response is estimated over a subset of pilot subcarriers and then 
interpolated over the remaining (data) subcarriers by using a 
DFT (Discrete Fourier Transform) based technique with zero 
padding in the time domain. Therefore, the learning process 
can be more complex if the size of the pilot symbols is large, so 
the estimation task becomes slow. 

Our contribution focus on the nonlinear M-SVR applied to 
a MIMO-OFDM system with comb-type pilot structure under 
mobility conditions. Indeed, we use the indices of pilot 
positions (as input in training phase) to estimate the channel 
frequency responses at these pilot positions (as output in 
training phase), and then channel frequency responses at all 
subcarriers in each OFDM symbol for each pair of antennas 
can be obtained by SVM interpolation. 

 

3. MIMO-OFDM System 

3.1. MIMO-OFDM Model 
 

In a MIMO-OFDM system, the output signal at each receive 
antenna Rx is a mixed signal consisting of the data streams 
coming from each transmit antenna Tx. Assuming that the 
cyclic prefix is longer than the channel response length, the 
receive signal at the jth Rx antenna can be presented in the 
frequency domain as follows: 
 

𝑅! 𝑙, 𝑘 = 𝐻!,! 𝑙, 𝑘   𝑋! 𝑙, 𝑘
!!

!!!

+𝑊! 𝑙, 𝑘 ,                                                     

𝑗 = 1,⋯ ,𝑁! ,      0 ≤ 𝑘 ≤ 𝑁 − 1,                                                                                  (1) 
 
Where 𝐻!,! 𝑙, 𝑘 represents the channel frequency response 
corresponding to the kth subcarrier at the lth OFDM symbol 
transmitted between the ith Tx antenna and the jth Rx antenna. 
Let 𝑁,𝑁!    and 𝑁! denote the number of subcarriers, the 
number of Tx antennas and the number of Rx antennas, 
respectively. 𝑋! 𝑙, 𝑘  denotes the data transmitted from the ith 
Tx antenna at the lth OFDM symbol on the kth subcarrier. 
𝑊! 𝑙, 𝑘  is the Additive White Gaussian Noise (AWGN) at the 
jth receiver antenna, with zero mean and variance 𝜎!! with 
power spectral density 𝑁! 2, and is assumed to be uncorrelated 
for different j’s, k’s and l'’s. 
 
 
 
 
 

3.2. Channel Model 
 

We consider the channel impulse response of the mobile 
wireless time varying multipath fading channel model which 
can be written as  
 

ℎ 𝜏, 𝑡 = ℎ! 𝑡   𝛿 𝑡 − 𝜏! ,
!!!

!!!

                                                                                  (2) 

 
where  ℎ! 𝑡  denotes the impulse response representing the 
complex attenuation of the  𝑞!!  path,   𝜏!  represents the random 
delay of the 𝑞!!  path and   𝐿  is the number of  multipaths in the 
channel. 

Since the mobile wireless channel is time variant, it is 
necessary to track the channel response continuously. The next 
section focus on the nonlinear complex M-SVR applied to a 
MIMO-OFDM architecture under mobility conditions with 
comb type pilot structure for multipath channel. The MIMO-
OFDM system under consideration requires an estimate of the 
frequency responses of data subchannels for each OFDM 
symbol corresponding to each antenna. Therefore, the learning 
and estimation phases are repeated for all OFDM symbols in 
order to track the channel variation. 

 

4. Nonlinear Complex M-SVR Estimator 

 
We note first that the index i and j throughout this section 

denotes the ith and jth antenna at the transmitter and receiver 
side respectively of the considered MIMO system. 

Let the OFDM frame contains  𝑁𝑙  OFDM symbols which 
every symbol includes  𝑁   subcarriers.  

The transmitting pilot symbols for each transmitter 
antenna i are    𝑿!!

   = 𝑑𝑖𝑎𝑔(𝑋    𝑙,𝑚  ∆𝑃 ),𝑚   = 0,1,⋯ ,𝑁! − 1, 
where     𝑙   and   𝑚     are labels in time domain and frequency 
domain respectively, and ∆𝑃  is the pilot interval in frequency 
domain. Pilot insertion in the subcarriers of every OFDM 
symbol must satisfy the demand of sampling theory and 
uniform distribution [2].  

The proposed channel estimation approach is based on 
nonlinear complex M-SVR algorithm which has two separate 
phases: learning phase and estimation phase.  

In learning phase, we estimate first the subchannels pilot 
symbols according to Least Squares criterion to strike 
  𝑚𝑖𝑛   [(𝑌!!

   − 𝑿!!    𝑭ℎ!,!) (𝑌!!
   − 𝑿!!    𝑭ℎ!,!)!] [3], as 

 
𝐻!,!! = 𝑿!!

!!  𝑌!!,  
  
                                                                                                                                                        (3) 

 
where 𝑌!! = 𝑌!  

  (𝑙,𝑚  ∆𝑃)  and 𝐻!,!! = 𝐻!,!     
𝑙,𝑚  ∆𝑃  are the 

received pilot symbols and the estimated frequency responses 
for the 𝑙!! OFDM symbol at pilot positions  𝑚  ∆𝑃  , respectively. 

Then, in the estimation phase and by the interpolation 
mechanism, frequency responses of data subchannels can be 
determined. Therefore, frequency responses of all the OFDM 
subcarriers are 

 
    𝐻!,!   𝑙, 𝑘   = 𝑓!,! 𝐻!,!! 𝑙,𝑚  ∆𝑃 ,                                                                                             4  

 
where 𝑘 = 0,⋯ ,𝑁 − 1, and 𝑓!,!(∙) is the interpolating function, 
which is determined by the nonlinear complex M-SVR 
approach. 
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In mobility environments, where the fading channels present 
complicated nonlinearities, linear approaches cannot achieve 
high estimation precision. Therefore, we adapt here a nonlinear 
complex M-SVR method since SVM is superior in solving 
nonlinear, small samples and high dimensional pattern 
recognition [2]. Thus, we map the input vectors to a higher 
dimensional feature space ℋ  (possibly infinity) by means of 
nonlinear transformation 𝝋   . So, the regularization term is 
referred to the regression vector in the Reproducing Kernel 
Hilbert Space (RKHS). The following regression function is 
then 

𝐻!,!   𝑚  ∆𝑃 = 𝒘!,!
𝑯 𝝋!,! 𝑚  ∆𝑃 + 𝑏!,! + 𝑒!,!!

  ,               

  𝑚 = 0,⋯ ,𝑁! − 1               5  

where   𝒘!,!
    is the weight vector, 𝑏!,!      is the bias term and 

residuals 𝑒!,!!  account for the effect of both approximation 
errors and noise. In the SVM framework, the optimality 
criterion is a regularized and constrained version of the 
regularized Least Squares criterion. In general, SVM 
algorithms minimize a regularized cost function of the 
residuals, usually the Vapnik’s 𝜀 − 𝑖𝑛𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 cost function 
[4].  

To improve the performance of the estimation algorithm, 
a robust cost function is introduced which is 𝜀 -Huber robust 
cost function given by [5] 

 

  ℒ  
! 𝑒!,!! =

0,                                                                                     𝑒!,!
! ≤ 𝜀                      

1
2𝛾

𝑒!,!
! − 𝜀

!
,                                    𝜀 ≤ 𝑒!,!

! ≤ 𝑒!  

𝐶 𝑒!,!
! − 𝜀 −

1
2
𝛾𝐶!,            𝑒! ≤ 𝑒!,!

! ,                

                (6) 

 
where 𝑒! = 𝜀 + 𝛾𝐶 , 𝜀  is the insensitive parameter which is 
positive scalar that represents the insensitivity to a low noise 
level, parameters 𝛾  and 𝐶  control essentially the trade-off 
between the regularization and the losses, and  represent the 
relevance of the residuals that are in the linear or in the 
quadratic cost zone, respectively. The cost function is linear for 
errors above  𝑒! , and quadratic for errors between 𝜀  and  𝑒! . 
Note that, errors lower than 𝜀  are ignored in the 
𝜀 − 𝑖𝑛𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑒     zone. The quadratic cost zone uses 
the    𝐿! − 𝑛𝑜𝑟𝑚   of errors, which is appropriate for Gaussian 
noise, and the linear cost zone limits the effect of sub-Gaussian 
noise [1]. Therefore, the 𝜀 -Huber robust cost function can be 
adapted to different types of noise.  

 
Let   ℒ  ! 𝑒!,!! = ℒ  

! ℛ 𝑒!,!! + ℒ  
! ℑ 𝑒!,!!  since   {𝑒!,!!}   are 

complex, where    ℛ ∙     and   ℑ ∙     represent real and imaginary 
parts, respectively.   
 
Now, we can state the primal problem as minimizing 
 

  

    
1
2
   𝒘!,!

!
+
1
2𝛾
   (𝜉!,!! + 𝜉!,!!

  ∗)!
  

!∈!!

+ 𝐶 (𝜉!,!! + 𝜉!,!!
  ∗)  

  

!∈!!

      

+
1
2𝛾
   (𝜁!,!! + 𝜁!,!!

  ∗)!
  

!∈!!

        + 𝐶   (𝜁!,!! + 𝜁!,!!
  ∗)

  

!∈!!

      

−
1
2

𝛾𝐶!
  

!∈!!,!!

                                                                                                                                                                    (7) 

 

constrained to 

      ℛ 𝐻!,!   𝑚  ∆𝑃 −𝒘!,!
𝑯 𝝋!,! 𝑚  ∆𝑃 − 𝑏!,! ≤ 𝜀 + 𝜉!,!!                                      

        ℑ 𝐻!,!   𝑚  ∆𝑃 −𝒘!,!
𝑯 𝝋!,! 𝑚  ∆𝑃 − 𝑏!,! ≤ 𝜀 + 𝜁!,!!                                       

    ℛ(−𝐻!,!   𝑚  ∆𝑃 +𝒘!,!
𝑯 𝝋!,! 𝑚  ∆𝑃 + 𝑏!,!) ≤ 𝜀 + 𝜉!,!!

  ∗                             

    ℑ(−𝐻!,!   𝑚  ∆𝑃 +𝒘!,!
𝑯 𝝋!,! 𝑚  ∆𝑃 + 𝑏!,!) ≤ 𝜀 + 𝜁!,!!

  ∗                           

                                                𝜉!,!!
  (∗), 𝜁!,!!

  (∗) ≥ 0,                                                                                                        (8) 

for  𝑚 = 0,⋯ ,𝑁! − 1, where 𝜉!,!!  and 𝜉!,!!
  ∗ are slack variables 

which stand for positive and negative errors in the real part, 
respectively. 𝜁!,!! and 𝜁!,!!

  ∗ are the errors for the imaginary parts.  
 

𝐼!, 𝐼!, 𝐼!  and  𝐼!  are the set of samples for which: 
𝐼! ∶  real part of the residuals are in the quadratic zone; 
𝐼! ∶  real part of the residuals are in the linear zone; 
𝐼! ∶  imaginary part of the residuals are in the quadratic zone; 
𝐼! ∶  imaginary part of the residuals are in the linear zone. 

 
To transform the minimization of the primal functional (7) 

subject to constraints in (8), into the optimization of the dual 
functional, we must first introduce the constraints into the 
primal functional to obtain the primal-dual functional. 

Then, by making zero the primal-dual functional gradient 
with respect to  𝜛!,! , we obtain an optimal solution for the 
weights  

 

𝒘!,! = 𝜓!,!!
!!!!

!!!

𝝋!,! 𝑚  ∆𝑃 = 𝜓!,!!
!!!!

!!!

𝝋!,! 𝑃! ,                                  (9) 

 
where       𝜓!,!! = (𝛼ℛ,!,!,! − 𝛼ℛ,!,!,!∗ ) + 𝑗(𝛼!,!,!,! −   𝛼!,!,!,!∗  with 
  𝛼ℛ,!,!,! ,𝛼ℛ,!,!,!∗ ,𝛼!,!,!,! ,   𝛼!,!,!,!∗   are the Lagrange multipliers 
for real and imaginary part of the residuals and   𝑃! =
𝑚  ∆𝑃 ,    𝑚 = 0,⋯ ,𝑁! − 1  are the pilot positions.  

Let the Gram matrix defined by 

𝑮𝒊,𝒋 𝑢, 𝑣 =< 𝝋𝒊,𝒋 𝑃! ,𝝋𝒊,𝒋 𝑃! >= 𝐾!,! 𝑃!,𝑃! ,                                    (10) 

where 𝐾!,! 𝑃!,𝑃!   is a Mercer’s kernel which represent the 
RBF kernel matrix which allows obviating the explicit 
knowledge of the nonlinear mapping  𝝋 ∙ . A compact form of 
the functional problem can be stated in matrix format by 
placing optimal solution 𝒘!,! into the primal dual functional 
and grouping terms. Therefore, the dual problem consists of 
maximizing 

 

      −
1
2
𝝍𝒊,𝒋
𝑯   

𝑮𝒊,𝒋 + 𝛾𝑰 𝝍𝒊,𝒋 + ℛ 𝝍𝒊,𝒋
𝑯𝑌!

!                    

− 𝜶𝓡,𝒊,𝒋 + 𝜶𝓡,𝒊,𝒋∗ + 𝜶𝑰,𝒊,𝒋 + 𝜶𝑰,𝒊,𝒋∗ 𝟏ℰ      (11) 

 

constrained to  

  0 ≤ 𝛼ℛ,!,!,! ,𝛼ℛ,!,!,!∗ ,𝛼!,!,!,! ,𝛼!,!,!,!∗ ≤ 𝐶,                                                            (12)   

where   𝝍𝒊,𝒋
   = [𝜓!,!!   

,⋯ ,𝜓!,!
!!!!

  
]!  ; I and 1 are the identity 

matrix and the all-ones column vector, respectively; 𝜶𝓡,𝒊,𝒋 is 
the vector which contains the corresponding dual variables, 
with the other subsets being similarly represented. The weight 
vector can be obtained by optimizing (11) with respect to 
𝛼ℛ,!,!,! ,𝛼ℛ,!,!,!∗ ,𝛼!,!,!,! ,   𝛼!,!,!,!∗  and then substituting into (9).  
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Therefore, and after training phase, frequency responses at all 
subcarriers in each OFDM symbol for each pair of antenna (i,j) 
can be obtained by SVM interpolation 

𝐻!,!   𝑘 = 𝜓!,!!
!!!!

!!!

𝐾!,! 𝑃!, 𝑘 + 𝑏!,!                                                                             (13) 

for 𝑘 = 1,⋯ ,𝑁.  
 
Note that, the obtained subset of dual multipliers which 

are nonzero will provide with a sparse solution.  As usual in the 
SVM framework, the free parameter of the kernel and the free 
parameters of the cost function have to be fixed by some a 
priori knowledge of the problem, or by using some validation 
set of observations [4]. 

5. Computer Simulations 

The specification parameters of an extended vehicular A 
model (EVA) for Downlink LTE system with the excess tap 
delay and the relative power for each path of the channel are 
presented in table 1. These parameters are defined by 3GPP 
standard [6]. 
 

Table 1. Extended Vehicular A model (EVA) [6]. 
 

 
Excess tap delay [ns] 

 
Relative power [dB] 
 

 

0 

 

0.0 

30 -1.5 

150 

310 

370 

710 

1090 

1730 

2510 

-1.4 

-3.6 

-0.6 

-9.1 

-7.0 

-12.0 

-16.9 

.  
 
In order to demonstrate the effectiveness of our proposed 

technique and evaluate the performance in the presence of 
AWGN noise under mobility condition, we used a varied range 
of signal-to-noise ratio (SNR). The SNR is given by [4] 

 
 

  𝑆𝑁𝑅!" = 10𝑙𝑜𝑔!"
𝐸 𝐼𝐷𝐹𝑇(𝑅! 𝑙, 𝑘 ) − 𝐼𝐷𝐹𝑇(𝑊! 𝑙, 𝑘 )

!

𝜎!!
.        (22) 

 
The complex M-SVR algorithm parameters are set as: 

𝐶 = 100, 𝛾 = 10!!, ℰ = .001.    
We simulate the MIMO-OFDM Downlink LTE system 

with parameters presented in table 2 with Alamouti coding.  
The nonlinear complex M-SVR estimate a number of 

OFDM symbols in the range of 140 symbols per receive 
antenna, corresponding to one radio frame LTE. Note that, the 
LTE radio frame duration is 10 ms [7], which is divided into 10 

subframes. Each subframe is further divided into two slots, 
each of 0.5 ms duration.  

Note that, in the LTE system, when two or more 
transmitter antennas are applied, the pilot symbols are 
transmitted orthogonally in space. Indeed, this orthogonality in 
space is obtained by letting all other antennas be silent in the 
resource element in which one antenna transmits a pilot symbol 
[8].  

     
Table 2. Parameters of simulations [7], [9] and [10]. 

 
 

Parameters 
 

 
Specifications 

 

Constellation 

 

16-QAM 

Mobile Speed (Km/h) 30 

𝑇! (µs) 

𝑓! (GHz) 

𝛿𝑓 (KHz) 

B (MHz) 

Size of DFT/IDFT  

Number of paths 

72 

2.15 

15 

5 

512 

9 

 
For the purpose of evaluation the performance of the 

nonlinear complex M-SVR algorithm under mobility 
conditions, we consider a scenario for Downlink LTE system 
with Alamouti coding for a mobile speed equal to 30 Km/h. 

 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Variations in time and in frequency of the channel 
frequency response for mobile speed = 30 Km/h. 

 
 
Fig. 1 presents the variation in time and in frequency of 

the channel frequency response for 𝐻!! 𝑙, 𝑘   which is simulated 
at the given multipath channel parameters. 

Fig. 2 presents the 𝐻!! 𝑙, 𝑘   channel response tracked by 
the proposed M-SVR method at SNR = 30 dB.  

Indeed, Fig. 2 shows that the nonlinear channel response 
in their real and imaginary parts is well tracked by the 
proposed complex M-SVR technique under mobility 
conditions. 
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Fig. 2. An example of the proposed channel tracking and the time 
variant channel frequency response 𝑯𝟏𝟏 𝒍,𝒌   simulated at 
SNR = 30 dB for mobile speed 30 Km/h. 

 
Fig. 3 shows the performance of LS, MMSE, Decision 

Feedback and M-SVR estimation techniques with Alamouti 
coding for (𝑁! = 2,   𝑁! = 1) in the presence of AWGN noise 
for a mobile speed at 30 Km/h. A poor performance is 
noticeably exhibited by LS for all noise levels, and good 
performance is observed with complex M-SVR which 
outperforms also MMSE and Decision Feedback.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. BER as a function of SNR for a MIMO system with 

Alamouti (2×1) encoding scheme for a mobile speed at 30 
Km/h. 

 
 
 
 

 
Fig. 4 presents a comparison between LS, MMSE, 

Decision Feedback and complex M-SVR techniques for 
Alamouti coding with  (𝑁! = 2,   𝑁! = 2). Fig. 4 confirms the 
results obtained in Fig. 3 for (2×1) Alamouti coding and shows 
that LS, MMSE and Decision Feedback suffer from a high 
BER, however, complex M-SVR performs better than other 
estimators in mobility condition for all SNR levels. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. BER performance of M-SVR with Alamouti (2×2) 

encoding scheme for a mobile speed at 30 Km/h. 
 
Regarding the complexity of these estimators, LS is the 

least complex estimator because it contains only one matrix 
inversion operation. However, the Decision Feedback estimator 
contains two operations of matrix inversion and two operations 
of matrix multiplication, and the MMSE estimator suffers from 
high complexity, especially if matrix inversions are needed 
each time the data change. On the other hand, the M-SVR 
estimator uses quadratic programming (quadprog function in 
Optimization MATLAB Toolbox) with the functions Buffer 
and kron for fast computation of kernel matrix using the 
Kronecker product, and thus the algorithm becomes faster. 

5. Conclusion 

This paper describes a semi-blind MIMO-OFDM channel 
estimation algorithm based on the M-SVR method to 
compensate and estimate channel effect for the MIMO-OFDM 
communication system. Indeed, this paper adopts the nonlinear 
complex M-SVR based channel estimator for a Downlink 
MIMO-LTE system with (2×1) and (2×2)  Alamouti coding in 
the presence of AWGN noise interfering with OFDM pilot 
symbols in mobility environment. 

Our formulation is based on nonlinear complex M-SVR 
specifically developed for comb type pilot arrangement-based 
MIMO-OFDM system. The proposed method is based on 
training process that uses learning sequence to estimate the 
channel variations. Therefore, pilot symbols are inserted into 
different subcarriers at different antennas in order to increase 
the convergence rate and the estimation accuracy. Through 
experimentation, results have confirmed the capabilities of the 
proposed nonlinear complex M-SVR MIMO-OFDM estimator 
in the presence of Gaussian noise interfering with the pilot 
symbols when compared to LS, MMSE and Decision Feedback 
with Alamouti coding. The proposal takes into account the 
temporal-spectral relationship of the OFDM signal which is 
used in the SVM framework for a time varying multipath 
fading wireless mobile channel. 
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