
 Journal of Ubiquitous Systems & Pervasive Networks
Volume 6, No. 1 (2015) pp. 01-10

* Corresponding author. Tel.: +966555669791
Fax: +9876543210; E-mail: hakurdi@ima,u.edu.sa
© 2015 International Association for Sharing Knowledge and Sustainability.
DOI: 10.5383/JUSPN.06.01.001

1

Personal Mobi le Grids: Ubiquitous Grid Environments For
Personal Users

Heba Kurdi*

King Saud University, Riyadh , SA, 11432

Abstract

The overall aim of this paper is to introduce Personal Mobile Grids (PM-Grids) as a novel paradigm in grid computing
that eases scaling grid infrastructures to mobile devices and extending grid users to individuals outside research and
enterprise domains. In this paper, architectural designs and simulation models for PM-Grids are presented as well as a
honeybee inspired resource scheduling heuristic incorporating a radical approach to grid schedulers. A detailed design
and implementation of HoPe with a decentralised self-management and adaptive policy are presented. PM-Grid designs
and HoPe implementation were evaluated thoroughly through a strictly controlled empirical evaluation framework with
a well-established heuristic in high throughput computing, the opportunistic scheduling heuristic (OSH), as a benchmark
algorithm. Experimental results demonstrated the superiority of HoPe performance in terms of stability, throughput and
turnaround time, under different running conditions of number of jobs and grid scales.

Keywords: Distributed networks, Mobile Computing Architectures, Mobile environments, Ubiquitous computing

1. Introduction

Nowadays, the mobile devices market has become one of the
largest markets in the world. It is rapidly evolving with
progressive reduction in cost, weight and size and continuous
improvement in performance. This has enabled many people to
move around with a basic set of electronic gadgets such as
mobile phones and laptops. These devices, which belong to the
same user and are usually within ten metres of her/him, can be
connected together with the user at its inner core forming a
Personal Area Network (PAN) [1],[2]. Besides this basic set of
electronic devices within the PAN, one might have other
devices in different locations, for instance in the home, office
and car. These devices, which belong to the same user, can be
connected together regardless of their geographical locations to
form a Personal Network (PN) [3][4]. Thus, one can gain
access to his/her electronic devices, any time anywhere.
Nonetheless, PANs and PNs are most commonly used for
applications involving data and peripheral sharing. This is due
to the resources allowed for sharing in PNs, PANs and all
today’s conventional networks being limited to data,
peripherals and secondary storage. The most important
resources, namely, processors cycles and runtime memories,
are still not available for sharing across these networks.
Hence, an important question arises here: Why not further
enable these networks to seamlessly share all resources and
functionalities in the form of services available across

computational grids [5]. As PNs can already share data,
peripherals and secondary storage among their devices, the
next logical step is to superimpose grid functionality over them
to allow the sharing of processors cycles and memories. Thus,
the net result is a huge virtual computer, which can be accessed
at anytime from anywhere. That is to say, a Personal Mobile
Grid (PM-Grid).
The core of any grid systems is an efficient scheduler that
offers better management and utilization of virtualized
underlying infrastructure resources [6]. Therefore, this paper
aims at designing, implementing and evaluating a PM-Grid
with a honeybee inspired resource scheduler (HoPe). The
proposed scheduler is based on a non-clairvoyant scheduling
policy, hence being able to deal with realistic demands, where
incoming requests for computing resources are unpredictable in
terms of timing and nature and running environments are
dynamically changing. This is considered as a great
improvement over current grid schedulers as they are of
clairvoyant policies assuming availability or predictability of
information about incoming jobs and running environments.
Clairvoyant policies drastically limit schedulers flexibility in
managing cloud infrastructure and considerably increase their
running time overheads in order to collect information about
jobs and underlying infrastructures or make reasonable
prediction about them.
PM-Grid designs and HoPe implementation were evaluated
thoroughly through a strictly controlled empirical evaluation
framework with a well-established heuristic in high throughput
computing, the opportunistic scheduling heuristic (OSH), as a

Heba Kurdi / Journal of Ubiquitous Systems & Pervasive Networks, 6 (2015) 01-10

2

benchmark algorithm. Comparisons with optimal values and
worst bounds were conducted to gain a clear insight into HoPe
behaviour, in terms of stability, throughput, turnaround time
and speedup, under different running conditions of number of
jobs and grid scales. Experimental results indicate the
efficiency of PM-Grid designs and demonstrate the ability of
HoPe to considerably reduce the effect of variations in grid
scale and job inter arrival times, illustrating better scalability
and sustainability, when compared to the OSH.
The rest of this paper is organised as follows: section 2
describes the design of PM-Grids at abstract and detailed
levels. Section 3 introduces the HoPe resource scheduler as the
core element for PM-Grids. In section 4, the evaluation
methodology and the experimental process are detailed while
results and discussion are presented in section 5. Section 6
compares PM-Grids with related projects and finally, the paper
is concluded in section 7.

2. PM-Grid Architecture

A PM-Grid is a grid environment, which can be owned and
utilised by an individual user. It is constructed over her/his
devices and might be extended to other devices which s/he
trusts. PM-Grids aim to enable the mobility of both, users
requesting access to grid resources and resources that are part
of a grid. This opens the doors to have the grid processing
power in more geographical locations such as emergency
communications in firefighting and natural disasters, as well as
many of the newly emerged mobile applications in e-learning,
e-healthcare among others.

2.1 Abstract Layered Architecture

Fig. 1. PM-Grid layered Architecture based on the PNs three level
architecture with the additional PM-Grid Level.

The PM-Grid architecture is based on the three levels PN
architecture proposed by the MAGNET project [4]. An
additional level is introduced between the network and service
levels, namely the PM-Grid level, as shown in figure1. Hence,
The PM-Grid architecture is composed of four abstract levels:
the connectivity level, network level, PM-Grid level and the

service level. These levels act as a middleware offering an
abstraction over physical devices.
The added PM-Grid level serves as a virtualisation layer to
hide the complexity of harnessing the heterogeneous
underlying computational resources from the end user. In this
level, resources available from the network level are grouped
into two main categories: personal resources residing inside the
PM-Grid, and foreign resources residing outside the grid.
Personal resources are grouped into larger virtual resources
based on the type of functionality they provide such as CPU
cycles, storage, address book and printing. The aim is to allow
personal users to submit service requests, for example, a
request for CPU cycles and memory to execute a
computational job, from any device available within their
trusted PNs without being concerned about where/when/how
these requests are executed. To achieve this goal, the grid level
should provide an efficient resource scheduler. The scheduler
is responsible for automatically decomposing, allocating and
executing jobs, then finally composing final results, making
them ready for the end user. The scheduler should be
lightweight, self-managed and adaptive to cope with the
dynamic nature of the PM-Grid environment. A detailed design
of such a resource scheduler is presented in section 3.

2.2 Detailed Architecture

A PM-Grid consists of groups of devices, which are usually
owned and utilised by the same person. All these devices are
connected via a well-secured network PN. Issues related to
connectivity are tackled in the PN connectivity level. Issues
related to security and clustering are all handled at the PN
network level, while issues related to presentation and quality
of services are dealt with at the PN service level.
Thus, basically, the key missing functional component after
superimposing grid functionality on top of a PN is a resource
management system for the newly added grid resources
represented by CPU cycles and runtime memories. These
resources require special handling to jointly execute
computational jobs in PM-Grids. The main functions of this
resource management system is to decompose parallel jobs, if
possible, into smaller tasks that can be accommodated by
mobile devices, then mapping these tasks to proper resources
and, after execution, composing final results sending them back
to clients. Therefore, as shown in Figure 2, from an
architectural point of view, a PM-Grid consists of three
functional elements: clients, workers and spaces.
Clients: devices with the least built-in resources, e.g. mobile
phones. They are used mainly for sending jobs or/and receiving
results.
Spaces: devices with high storage capabilities, e.g. media
players. They serve as a simple associative memory where
entities communicate with each other. Spaces are further
divided into:
• Work-spaces to hold submitted jobs.
• A result-space that contains intermediate and final

results.
Workers: devices with high processing capabilities, e.g. laptops
and desktops. Workers are subdivided into:
• Executors to run the computational logic encapsulated in

a job.
• Composers to collect all initial results related to a certain

job and compose them into a final result.
The special organisation for distributing the system
functionality among multiple agents (workers) with a single
target pool (result-space) and multiple job sources (work-

Heba Kurdi / Journal of Ubiquitous Systems & Pervasive Networks, 6 (2015) 01-10

3

spaces) are inspired by the way honeybees are organised in a
colony, as explained in section 3.

Fig. 2. PM-Grid Detailed View consists of three functional

elements: clients, workers and spaces.

3. Resource Scheduler Design

3.1 Scheduling Problem in PM-Grids

A PM-Grid is a unified collection of resources connected via a
PN. It has the potential to deliver grid level services to a
personal end user. Whenever a need occurs, a PM-Grid user
uses his/her client device to send a computational job for
execution on his/her PM-Grid. The job is received at the
nearest work-space. Hence, a variable unpredictable stream of
incoming jobs arrives at each work-space from client devices.
Executer devices need to be efficiently allocated to incoming
job streams producing results that are sent to the result-space
where an unpredictable stream of generated results arrives. All
results that belong to one job are accumulated in a separate
output file. When an output file containing all job results is
ready, it is allocated to a composer device for final preparation
before being dispatched to the sender or a requested address.
As in the case of all grid systems, the core of a PM-Grid is a
scheduler, which strives to efficiently assign tasks to available
grid resources. Grid resource scheduling is a complex problem
in general [7]. Centralised plan-ahead schedulers are usually
deployed for this purpose [8]. In these schedulers, a single
authority is in charge of all decisions regarding who should run
what and when. Two assumptions are common in such
schedulers: First, clear and sufficient information about
incoming jobs is known in advance, which is simply not
realistic. Second, a globally detailed and frequently updated
view of the system resources state is available [9], which is
prohibitively expensive, severely restricts the scalability of the
system and exposes it to high security risks.
Assuming the availability of clear information about the
incoming jobs before making the scheduling decision, is what
is referred to as clairvoyant scheduling, with which virtually all
grid resources are concerned. Although this clairvoyant
assumption considerably simplifies the scheduling problem, it
is not valid for most real world problems [10]. In contrast, the
non-clairvoyant scheduling approach assumes that such
information is unavailable in advance, making it more practical
for many computer engineering problems, especially grid
computing where it is usually difficult and costly to make
reasonable predictions.

The scheduling problem in a PM-Grid can be defined as
efficient non-clairvoyant scheduling in a highly dynamic
environment of limited resources. The non-clairvoyant
scheduling problem is considered as NP-hard as it contains two
classical NP-hard problems as special cases:
• The first case, when all tasks are sequential, the problem

reduces to the multiprocessor scheduling problem, which
is NP-hard [11].

• The second case, when all tasks have the same execution
time, the scheduling problem becomes the bin-packing
problem, which is NP-hard also [12].

Therefore, one practical way to solve this problem is to design
a heuristic that tries to find a “good” solution for this
extraordinarily difficult scheduling problem [13].

3.2 Scheduling Problem in Honeybee Colony

A honeybee colony has a limited number of bees, which it
needs to allocate wisely to the surrounding flower patches from
which they collect nectar and bring it to the hive for further
processing in order to generate comb honey. This process is
what has been referred to as the Nectar Acquisition Process
(NAP).
During NAP, a honeybee colony divides labour, based on
temporary specialisation, between two groups: forager bees,
who work in the field collecting nectar from food sources
turning it into raw honey, and receiver bees, who work in the
hive processing raw honey to produce comb honey (honey-
filled wax comb as stored directly by the bees). This
organisation boosts the efficiency of the NAP, but requires
dynamic coordination of the two labour groups to keep the
rates of nectar collection and honey processing in balance.
This coordination problem is significant because the colony
experiences large and unpredictable variations in the nectar
availability. The colony adjusts its nectar collection and honey
processing rates with respect to external nectar supply mainly
by dynamically adjusting the number of forager and receiver
bees through “waggle” and “tremble” dances.
When food sources are laden with nectar, the colony increases
the number of forager bees, raising the nectar collection rate.
This is done through the waggle dance, which stimulates some
receiver bees to change their roles to foragers and help in
nectar foraging. On the other hand, when the processing rate is
lowered, having a number of receiver bees changed their role
to forager bees, the colony speeds up the honey processing rate
through tremble dance. The tremble dance stimulates some
forager bees to work as receiver bees [14].
So basically, the honeybee colony faces an extraordinarily
difficult scheduling problem in nature, due to weather
unpredictability and food variability, while allocating
honeybees to nectar sources during the NAP. The colony
efficiently solves this problem through simple non-intelligent
agents, (honeybees) running a decentralised cooperative and
adaptive self-scheduling policy. The aim is to maximise the
nectar intake while maintaining the hive at a stable state where
nectar collecting and honey processing rates are balanced. This
observation is the foundation of the broad hypothesis behind
The Honeybee Inspired Resources scheduler for Personal
Mobile Grids (HoPe): Efficient non-clairvoyant scheduling in a
highly dynamic environment of limited resources may be
achieved with a heuristic approach based on simple agents. The
agents allocate themselves to multiple work sources in a
decentralised, cooperative and adaptive self-scheduling scheme
striving to maximise work intake while maintaining the system
in a stable state, in an attempt to imitate the behaviour of
honeybees during the NAP. The mapping between the main

Heba Kurdi / Journal of Ubiquitous Systems & Pervasive Networks, 6 (2015) 01-10

4

honeybee colony and HoPe elements is presented in Table 1
and HoPe algorithm is detailed in [15][16].
TABLE 1. The Honeybee Analogy

Honeybee colony HoPe
Food sources Work-spaces
Hive Result-space
Forager bees Executer devices
Receiver bees Composer devices
Nectar Job
Honey Result

4. Evaluation

4.1 Evaluation Objectives

The thesis is that a PM-Grid can allow personal users to
seamlessly combine their own personal devices, either mobile
or stationary, to accomplish relatively large computational
jobs. To test this thesis, an adaptive self-scheduling heuristic,
HoPe, has been developed with an end aim of evaluating PM-
Grids as a proof-of-concept. The aim has been fulfilled through
the following objectives:
• Test HoPe performance by exploring how it is affected

by variations in PM-Grid environment specifications,
namely:

- The job inter arrival time: The system should sustain
various loads as personal users’ requirements vary
significantly.

- The number of nodes: the system should be
sufficiently scalable to accommodate different
infrastructure scales, as PM-Grids can be utilised by
individuals as well as small size organisations.

• Evaluate HoPe efficiency by comparing it to a well-
established heuristic in the same area, as well as an
optimum value or worst bound, when possible, for each
performance metric.

• Build performance models for both heuristics to obtain a
clearer insight into HoPe behaviour.

4.2 Experimental Design

There are two main limitations in the simulation methodology
of current scheduling research. First, there are no simulation
standards and, second, traditional computing platform
standards are no longer valid for modern platforms [17]. To
overcome this problem, strictly controlled experiments in a
logical network model of PM-Grids have been designed which
involved the following steps:
1. Identifying the critical elements inherent in the design of

grid scheduling systems and deciding on the set to be
considered in this experiment: job inter arrival time,
number of nodes, job size and processor capacity.

2. Varying the experimental variables, job inter arrival time
and number of nodes, to simulate a representative sample
of grid environments.

3. Controlling extraneous variables, job size and processor
computational capacity, by randomisation to ensure a
representative sample in all experiments.

4. Identifying a benchmark algorithm. The opportunistic
scheduling heuristic (OSH) has been selected for this
purpose.

5. Identifying suitable performance measures, stability, net
throughput, mean and Turnaround (TT), to compare HoPe

and OSH.
6. Building a flexible PM-Grid simulator that offers an easily

controlled environment and robust experimental design.
7. Comparing the performance of both HoPe and OSH to

optimum values or worst bounds, then reporting and
analysing the main findings.

8. Improving the accuracy of the simulation-base study
through:

• Running 10 simulations and accepting the mean
outcome.

• Ignoring simulation results generated in the first 60
seconds.

• Measuring the uncertainty in data using the measure of
standard deviation (SD) and displaying the values as
error bars in all charts.

• Calculating the absolute error and relative error to
examine the quality of obtained results.

4.3 Resource Model

A simulation model of the PM-Grid platform was developed
using OpnetTM [18] modeller. Three representative
infrastructure scales of PM-Grids in potential application areas
were considered:
• Small (4 workers/cluster).
• Medium (8 workers/cluster).
• Large (16 workers/cluster).

The model was simulated as a logical network, that consisted
of N=5 clusters, as shown in Figure 3. All clients were placed
in one cluster (cluster 0) which represented the PAN with the
user at its inner core submitting jobs to his/her PM-Grid via
devices in this cluster. For simplicity, the result-space was
placed alone in a separate cluster (cluster 4). All other clusters
consisted of one work-space and w workers.

Fig. 3. Simulated Model for a small size PM-Grid environment

with 4 workers/cluster.

From the total number of workers, 75% were initially assigned
an executer role, and the remaining 25% were assigned a
composer role. This selection was aimed to conform to the
natural distribution of roles in a honeybee colony where [14]
stated that nearly 75% of honeybees are food foragers. This
model can scale easily and allows the testing of HoPe
performance in isolation of possible effects caused by physical

cluster 0 cluster 1

cluster 2 cluster 4

cluster 3

client workerr space

Heba Kurdi / Journal of Ubiquitous Systems & Pervasive Networks, 6 (2015) 01-10

5

hardware, network topology and implementation technologies.
This isolation is important to gain a clear insight into HoPe
performance. Experimenting with realistic networks is left for
future work to see how physical hardware and network
parameters of a PM-Grid may affect HoPe performance.

4.4 Job model

The job model assumed by HoPe is divisible workload (DL)
applications where each job can be divided into an arbitrary
number of independent tasks of low granularity. It is assumed
that the input to each task is a single file, which is sent with the
task. Each task produces exactly one output file, as shown in
Figure 4. This model can be found in many everyday
application areas related to personal users such as image
processing, database searching and cryptography.
Without loss of generality, this paper has considered a
cryptography application, based on the Trial Division
Algorithm, in particular as it has potential applications in
personal environments where security and privacy are critical
issues. All worker devices are assumed to have a word-size of,
at least, sixteen-bits. The last prime that fits into a sixteen-bit
unsigned integer should be less than 216-1=65,535, which is
65,521. That suffices to factorise numbers up to 65,5212 =
4,293,001,441.

Fig. 4. Job model assumed by HoPe is divisible workload (DL)

applications where each job can be divided into an
arbitrary number of independent tasks of low granularity.

The workload model is simulated as streams of DL jobs
arriving at each work-space according to a Poisson process.
Multiple values for both job size and inter arrival time are
considered to ensure a representative sample in all
experiments, as necessitated by [19]. The job size is considered
as an intrinsic variable and controlled by randomisation.
Heterogeneity in job size is modelled assuming three sizes of
jobs (Ja, Jb, Jc). During running time, a uniform random
number Rjob from 1 to 3 is generated indicating the job size, as
shown in Table 2.
Job inter arrival time is considered as an experimental variable;
nine different values for inter arrival time were selected in the
range between two extreme cases of the expected usage of PM-
Grids: (4, 8, 12, 16, 20, 32, 40, 80, 120 and 180) seconds.

TABLE 2. Experimental Job Sizes
Job Job size (j) in Mflop
Ja 2×102 < j ≤ 3×102
Jb 1×102 < j ≤ 2×102
Jc j ≤ 1×102

4.5 Performance Metrics

Three performance metrics were considered:
Stability: where the system strives to maximise the job
collection rate subject to minimising the difference between job
collection and result generation rates. The stability is calculated
as the absolute value of the difference between the job
collection rate F(Nc) and the result generation rate F(Np) as
follows:

Stability = (1-| F(Np) - F(Nc) |)×100
Mean turnaround time (TT): represents the elapsed time
from when a client submits a job until the client receives the
corresponding results, and is calculated as:

TT = result received time – job submission time
Net throughput: represents the amount of work completed by
the system over a period of time. It is measured as the number
of jobs completed from time zero to time t.

5. Results and Discussion

Each scenario, simulating five hours (18000 sec.) of real time,
ran several times and means were calculated after discarding
data from the initial 60 sec. Mathematical and graphical
performance models that illustrate HoPe and OSH behaviours,
under different running conditions, were generated using
multiple regressions and full quadratic equations. The models
show the general behaviour of both heuristics when inter
arrival time falls in the range from 4 to 180 sec. and the grid
scale is in the range from 4 to 16 workers/cluster. Results were
analysed using the ANOVA test and statistical significance of
the full quadratic models predicted was evaluated using
Fisher’s statistical test (F) and F-significant (F-signif.).

5.1 Stability

Figure 5 and Figure 6 illustrate HoPe and OSH stability
respectively, in terms of the difference in rate between job
collection and result generation cycles calculated using the
mean time. The model in Figure 5 shows that HoPe tends to
maintain optimum stability (100%-98%) in a considerable wide
area of the entire problem space. As expected, when there are
enough workers, no matter how often jobs arrive. HoPe can
maintain the difference between job collection and result
generation at a minimum level. The situation changes gradually
as the grid scale shrinks when stability becomes more sensitive
to the inter arrival time. The insignificance P-value of all
coefficients, in Table 3, emphasises that HoPe has successfully
marginalised the effects of variations in the grid scale and the
job inter arrival time when stability is considered.
The model in Figure 6 shows that the OSH tends to maintain
optimum stability in a relatively small area of the entire
problem space. It is also clear from the model, and also from
the significance P-value of (b1 and b3) coefficients in Table 4,
that the OSH is more sensitive to variations in the inter arrival
time under all grid scales in the displayed range.
Mathematical equations and statistical data of the HoPe
stability model and the OSH stability model are presented in
Table 3 and Table 4 respectively.

J

T1

T2

Tk

…

Job

Tasks

 Sub-results

Result R
	

Rk
	

R2
	

R1
	

…

Heba Kurdi / Journal of Ubiquitous Systems & Pervasive Networks, 6 (2015) 01-10

6

4 40 80 12
0 16
0

4
7
91215

90

92

94

96

98

100

st
ab

ili
ty

 (%
)

interarrival time
(sec.)

grid scale
(worker/cluster)

98.0-100.0

96.0-98.0

94.0-96.0

92.0-94.0

90.0-92.0

Fig. 5. HoPe stability model illustrating optimum stability (100%-

98%) in a considerable wide area of the entire problem
space.

4 40

80 12
0 16
0

4
7
91215

90

92

94

96

98

100

st
ab

ili
ty

 (%
)

interarrival time
(sec.)

grid scale
(worker/cluster)

98.0-100.0

96.0-98.0

94.0-96.0

92.0-94.0

Fig. 6. OSH stability model illustrating optimum stability in a

relatively small area of the problem space.

TABLE 3. Statistical Data of HoPe Stability Model

HoPe_stability = b0 + b1× inter arrival_time+ b2 × grid_scale +
b3 inter arrival_time × inter arrival_time + b4× inter arrival_time

× grid_scale + b5× grid_scale × grid_scale
F =1.018 F-signif = 0.376

Coefficients P-value -95% 95%
b0 89.80 3.04E-24 86.16 93.43
b1 0.03430 0.155 -0.00885 0.07744
b2 1.085 0.268 0.262 1.909
b3 -0.000022 0.339 -0.000236 0.000194
b4 -0.001900 0.378 -0.00392 0.00016
b5 -0.02900 0.385 -0.06805 0.01009

TABLE 4. Statistical Data of OSH Stability Model

OSH_stability = b0 + b1× inter arrival_time+ b2 × grid_scale +
b3 inter arrival_time × inter arrival_time + b4× inter arrival_time

× grid_scale + b5× grid_scale × grid_scale
F = 3.159 F-signif = 0.02789

Coefficients P-value -95% 95%
b0 90.80 7.94E-22 86.09 95.51
b1 0.09511 0.00385 0.03921 0.151
b2 0.03720 0.960 -1.025 1.100
b3 -0.000239 0.01638 -0.000517 3.86058E-05
b4 -0.000977 0.432 -0.00362 0.00167
b5 0.00800 0.836 -0.04264 0.05864

5.2 Net Throughput

Figure 7 and Figure 8 summarise the behaviour of HoPe and
the OSH respectively in terms of the net throughput. As
expected, the net throughput under both heuristics tends to
increase as the load inside the system becomes heavier as the
inter arrival time gets smaller in value.
Comparing the two figures demonstrates the superiority of
HoPe performance when net throughput is considered. An
important observation is clear also where the net throughput of
HoPe looks marginally affected by the grid scale.
Consequently, the HoPe net throughput is mainly a function of
the inter arrival time, which clearly demonstrates the efficiency
of the dynamic role-altering technique adopted by HoPe, where
the system virtualises the actual number of workers to cope
with the current context requirements. In contrast, the OSH net
throughput is significantly affected by the grid scale,
particularly for low values of the inter arrival time.
Mathematical equations and statistical data of the HoPe net
throughput model and the OSH net throughput model are
presented in Table 5 and Table 6 respectively.

4
40
80

12
0

16
0

47912
15

0
2
4
6
8
10
12
14
16
18

th
ro

ug
hp

ut
(th

ou
sa

nd
 jo

b/
5h

.)

interarrival time
(sec.)

grid scale
(worker/cluster)

14.0-16.0
12.0-14.0
10.0-12.0
8.0-10.0
6.0-8.0
4.0-6.0
2.0-4.0
0.0-2.0

Fig. 7. HoPe throughput model illustrating high net throughput.

An important observation is clear also, where the net
throughput of HoPe looks marginally affected by the grid
scale.

4
40 80

12
0

16
0

479

12

15

0
2
4
6
8
10
12
14
16
18

th
ro

ug
hp

ut
(th

ou
sa

nd
 jo

b/
5h

.)

interarrival time
(sec.)

grid scale
(worker/cluster)

16.0-18.0
14.0-16.0
12.0-14.0
10.0-12.0
8.0-10.0
6.0-8.0
4.0-6.0
2.0-4.0
0.0-2.0

Fig. 8. OSH throughput model illustrating OSH net throughput is

lower than HoPe and significantly affected by the grid
scale, particularly for low values of the inter arrival time.

Heba Kurdi / Journal of Ubiquitous Systems & Pervasive Networks, 6 (2015) 01-10

7

TABLE 5. Statistical Data of HoPe Throughput Model

HoPe_throughput = b0 + b1× inter arrival_time+ b2 ×
grid_scale + b3 inter arrival_time × inter arrival_time + b4×
inter arrival_time × grid_scale + b5× grid_scale × grid_scale

F = 7.332 F-signif = 0.000409
Coefficients P-value -95% 95%

b0 16666.6 0.03262 7880.13 25453.2
b1 216.63 0.822 -1766.0 2199.3
b2 -214.58 0.000334 -318.88 -110.28
b3 -8.016 0.862 -102.51 86.47
b4 -0.437 0.855 -5.370 4.495
b5 0.685 0.00120 0.167 1.204

TABLE 6. Statistical Data of OSH Throughput Model

OSH_throughput = b0 + b1× inter arrival_time+ b2 × grid_scale
+ b3 inter arrival_time × inter arrival_time + b4× inter

arrival_time × grid_scale + b5× grid_scale × grid_scale
F = 10.44 F-signif = 3.87375E-05

Coefficients P-value -95% 95%
b0 4540.0 0.183 -639.418 9719.334
b1 615.25 0.288 -553.455 783.954
b2 -116.90 0.00101 -178.383 -55.416
b3 2.33 0.569 -53.368 58.02841
b4 -4.000 0.09841 -6.90689 -1.0913
b5 0.565 0.00109 0.259235 0.870749

5.3 Turnaround Time (TT)
Figure 9 and Figure 10 summarise the behaviour of HoPe and
the OSH respectively in terms of TT. The dominance of HoPe
performance is clear by comparing the scales in the TT axis in
the two figures. Figure 9 shows that the TT value under HoPe
is gradually getting smaller as the grid becomes larger while
the inter arrival time has a notably less effect in large grid
scales. The case is different when it comes to the OSH, as
illustrated in Figure 10 where the inter arrival time has an
increased effect on the value of the TT.

4

4080

12
0

16
0

4
7
9

12

15

0
4
8
12
16
20
24
28

TT
 (s

ec
.)

interarriv al time
(sec.)

grid scale
(w orker/cluster)

12.0-16.0

8.0-12.0

4.0-8.0

0.0-4.0

Fig. 9. HoPe TT model illustrating low TT value which is

gradually getting smaller as the grid becomes larger while
the inter arrival time has a notably less effect in large grid
scales.

As expected, under both heuristics the TT approaches its
minimal values as both the grid scale and the inter arrival time
approach their maximum values, while the TT approaches its
maximum as both approach their minimum. Mathematical
equations and statistical data of the HoPe mean TT model and
the OSH mean TT model are presented in Table 7 and Table 8
respectively.

4

40

80

12
0

16
0

4
7
9

12

15

0
4
8
12
16
20
24

28

TT
 (s

ec
.)

interarriv al time
(sec.)

grid scale
(w orker/cluster)

24.0-28.0

20.0-24.0

16.0-20.0

12.0-16.0

8.0-12.0

4.0-8.0

Fig. 10. OSH TT model illustrating low TT value is gradually

getting smaller as the grid becomes larger while the inter
arrival time has notably less effect in large grid scales.

TABLE 7. Statistical Data of HoPe TT Model

HoPe_ TT = b0 + b1× inter arrival_time+ b2 × grid_scale + b3
inter arrival_time × inter arrival_time + b4× inter arrival_time ×

grid_scale + b5× grid_scale × grid_scale
F = 22.15 F-signif = 1.01124E-07

Coefficients P-value -95% 95%
b0 17.8 3.86E-10 15.26 20.34
b1 -1.5 0.000172 -2.074 -0.926
b2 -0.04678 0.00408 -0.07696 -0.01660
b3 0.03958 0.00666 0.01224 0.06692
b4 0.0011 0.03270 -0.000328 0.00253
b5 0.00011 0.109 -3.94256E-05 0.000261

TABLE 8. Statistical Data of OSH TT Model

OSH_ TT = b0 + b1× inter arrival_time+ b2 × grid_scale + b3
inter arrival_time × inter arrival_time + b4× inter arrival_time ×

grid_scale + b5× grid_scale × grid_scale
F = 32.67 F-signif = 3.19009E-09

Coefficients P-value -95% 95%
b0 37.80 3.34E-10 31.77 43.83
b1 -3.000 0.000280 -4.361 -1.639
b2 -0.185 2.57E-05 -0.256 -0.113
b3 0.07492 0.02565 0.01005 0.140
b4 0.00820 5.48E-05 0.00482 0.01159
b5 0.000230 0.08247 -0.00012 0.000588

6 Related Work

A detailed survey on emerging grid systems is presented in
[20]. The survey sheds the light on new paradigms in the area
such as Personal Grids and Mobile Grids. In this section, we
indicate how these systems are related to PM-Grids.
Connecting distrusted devices owned by an individual, or a
group of individuals, and allowing them to share network
resources is not the core of PM-Grids; PNs [4], PN Federation
(PN-F) [16], Personal Grid (PG) [21][22] and Personal
distributed Environment (PDE) [23][24] have been already
proposed for this purpose. Allowing mobile access to grid
systems is also not the core of PM-Grids; several projects, such

Heba Kurdi / Journal of Ubiquitous Systems & Pervasive Networks, 6 (2015) 01-10

8

as [33] [25], have already addressed this issue. The novelty of
PM-Grids are in superimposing computational grid
functionalities on top of networked resource limited devices,
whether they are mobile or stationary, and making the grid
functionality available at personal users’ hands. This section
places PM-Grids amongst the above-mentioned projects and
highlights the main similarities and differences. It is important
to note that this paper focuses on the PM-Gird paradigm more
than the resource scheduler HoPe [14][16] and this is why only
related grid systems are reviewed in this section. Detailed
survey of well-established grid schedulers, such as Condor
[26], Legion [27] and Nimrod-G [28], and other bio-inspired
scheduling algorithms, such as ant [29] and bee [30] is
presented in [31].

6.1 PN and PN Federation

A PN offers a secure environment for a personal user to share
network resources among his/her own devices. In MAGNET
Beyond [4] and PNP2008 [32] the concept of PNs is extended
into PN Federation (PN-F or Fednets), a secure cooperation
between PNs of different users for a specific common purpose
[20]. However, both PN and PN-F are concerned with sharing
network resources such as data and peripherals rather than
computing resources such as CPU cycles and runtime
memories. Additionally, PN-Fs are formed only on demand for
temporal situations; once the task is completed the network
dissolves. On the other hand, PM-Grids are mainly concerned
with sharing computing resources, and are set on a long-term
basis for long-term goals.

6.2 Mobile Grids

The Akogrimo (Access to knowledge through the grid in
mobile world) project [25] is the first IST project that explicitly
targets Mobile Grids. While both Akogrimo and PM-Grid are
concerned with integrating mobile devices in grid
environments, Akogrimo is designed specifically for people in
an enterprise domain, rather than for individual users in PM-
Grids. The architecture of Akogrimo is based on an Enterprise
Network, which is built out of a consortium of enterprises in
contrast to a PN underlying a PM-Grid, which belongs to a
single user. Additionally, mobile devices serve only as entry
points to the grid in Akogrimo while they can participate
actively in PM-Grids.

6.3 Personal Grids

A framework for a Personal Grid constructed over personal
desktop computers is proposed in [22]. The framework consists
of a two level hierarchal scheduling scheme where a super-
node distributes jobs among clusters. Then, a master node in
each cluster distributes the load among workers in FIFO style.
The PM-Grid is different in that it extends the grid platform to
mobile devices. Additionally, it has a distributed adaptive self-
control scheduling scheme with no central entity, at the grid or
cluster level, such as a super- or a central-node, making the
scheduling decision.
The VEGA Grid project [21] has also proposed a framework
for a Personal Grid (PG) to allow the integration of desktop
computers into a “Global Grid System”. In this platform,
mobile devices are also used only as entry points to the grid.
The PG aims primarily to establish a P2P platform for file
sharing rather than processor sharing.

6.4 Personal Distributed Environment

In [23, 24] a Personal Distributed Environment (PDE) is
proposed to allow a personal user to access his/her personal
devices over heterogeneous networks to gain access to file
sharing services such a global address book and the delivery of
rich multimedia content. Again, the main concern here is data
communication rather than computations.

7 Conclusion

The overall aim of the paper has been to introduce PM-Grids as
a novel paradigm in grid computing for endowing individuals
with resource-rich infrastructures that can serve as virtual
general-purpose and mobile supercomputers. PM-Grids have
the potential to bridge the gap between personal users and
mobile devices on the one side, and current grid systems on the
other.
The paper has also aimed to address the non-clairvoyant
scheduling problem in grid computing, where job information
is not available to the system before the end of the execution.
HoPe, which is a novel honeybee- inspired resource scheduling
heuristic with a decentralised self-management and adaptive
scheduling policy, has been proposed to achieve this aim.
The paper aims have been fulfilled resulting in the following
main contributions:
First, architectural designs and models for PM-Grids have been
developed based on the PNs architecture and as a natural
extension to them; an abstract layered view, a detailed inside
view and simulated models have been presented and evaluated
at different scales in terms of the numbers of jobs and devices
per cluster.
Second, a detailed design, implementation and evaluation of
HoPe have been initiated. To the best of our knowledge, HoPe
is the first algorithm to shed light on the non-clairvoyant
scheduling problem in grid computing. It is the first honeybee-
inspired algorithm attempting to solve the resource scheduling
problem relying totally on local and computationally simple
parameters.
Third, a controlled empirical evaluation framework to prove
the concept of PM-Grids and to evaluate the performance of
HoPe has been developed. A flexible simulator has been built
for this purpose allowing the control of experimental
parameters, randomising extraneous variables as well as
measuring and analysing various performance metrics.
Fourth, performance models of HoPe and OSH have been
predicted in forms of mathematical equations and 3D graphical
representations. These models are important to gain a clearer
insight into the behaviour of each heuristic in regard to
stability, net throughput, turnaround time and speedup under
various running conditions of job inter arrival times and grid
scales.
It can be concluded, based on the experimental results and
predicted performance models, that using HoPe for resource
scheduling in PM-Grids considerably reduced the effect of
variations in grid scale and job inter arrival times, illustrating
better scalability and sustainability, when compared to the
OSH. However, these accomplishments need to be followed
with thorough development efforts to transform the PM-Grid
models into reality and apply HoPe in other contexts beyond
PM-Grids. The work in this thesis opens up research on various

Heba Kurdi / Journal of Ubiquitous Systems & Pervasive Networks, 6 (2015) 01-10

9

interesting issues and directions.

Acknowledgments

This work was partially funded by the Long-Term
Comprehensive National Plan for Science, Technology and
Innovation of the Kingdom of Saudi Arabia, grant number 11-
INF1895-08.

References

 [1] R. C.Braley, Ian C. Gifford, and Robert F. Heile,
“Wireless personal area networks: an overview of the IEEE
P802.15 working group,” SIGMOBILE Mobile Comput.
Commun. Rev., 2000, vol. 4, pp. 26-33.
http://dx.doi.org/10.1145/360449.360465

[2] S. A Mahmud, Kumendra Sivarajah, S. Khan and H. S. Al-
Raweshidy, "Meshed High Data Rate Personal Area
Networks," Journal of IEEE Communications Surveys &
Tutorial , Vol 10, March 2008, pp. 58-
69. http://dx.doi.org/10.1109/COMST.2008.4483670
[3] T. Suliman, K. Sivarajah and H. S. Al-Raweshidy,"
Modification of the IEEE 802.15.3 standardisation for PNC
selection performance", IEEE Communications Magazine,
vol. 45, Issue 12 pp.102-109, December 2007.

[4] IST.MAGNET Beyond (IST-FP6-IP-027369) [online].
Available: http://www.magnet.aau.dk, [accessed Nov. 2, 2013].

[5] I. Foster and C. Kesselman, Eds., The Grid2: Blueprint for
a Future Computing Infrastructure. San Francisco: Morgan
Kaufmann, 2003.

[6] M. Li and M. Baker, The Grid: Core Technologies. Wiley,
2005. http://dx.doi.org/10.1002/0470094192

[7] J.Kołodziej, S. Khan, L. Wang, M. Kisiel-Dorohinicki, S.
A. Madani, E. Niewiadomska-Szynkiewicz, A. Y. Zomaya, C.
Xu, “Security, energy, and performance-aware resource
allocation mechanisms for computational grids,” Future
Generation Computer Systems, vol. 31, Feb. 2014, pp. 77–92.
http://dx.doi.org/10.1016/j.future.2012.09.009

[8] R. Duan, R. Prodan, X. Li, “A sequential cooperative game
theoretic approach to scheduling multiple large-scale
applications in grids,” Future Generation Computer Systems,
Volume 30, Jan. 2014, Pages 27-43, ISSN 0167-739X

[9] A.J. Chakravarti, G. Baumgartner, and M. Lauria, “Self-
organizing scheduling on the organic grid,” Int. J. High
Performance Comput. Applicat., vol. 20, pp. 115–130, 2006.
http://dx.doi.org/10.1177/1094342006061892

[10] J. Leung, L. Kelly and J. H. Anderson, Handbook of
Scheduling: Algorithms, Models, and Performance Analysis.
Boca Raton, FL: CRC Press, 2004.

[11] R. L. Graham, “Bounds on multiprocessing timing
anomalies,” SIAM J. Appl. Math., vol. 17, no. 2, pp. 416-429,
1969. http://dx.doi.org/10.1137/0117039

[12] D.S. Johnson, A. Demers, J.D. Ullman, M.R. Garey and
R.L. Graham, “Worst-case performance bounds for simple one-
dimensional packing algorithms,” SIAM J. Comput., vol.3, pp.
299–325, 1974. http://dx.doi.org/10.1137/0203025

[13] K. Li, “An average-case analysis of online non-clairvoyant
scheduling of independent parallel tasks,” J. Parallel Distrib.
Comput., vol. 66, no. 5, pp. 617-625, May 2006.
http://dx.doi.org/10.1016/j.jpdc.2005.06.007

[14] T. D. Seeley, The Wisdom of the Hive: The Social
Physiology of Honey Bee Colonies. MA: Harvard University
Press, 1995.

[15] H. Kurdi, “Method of forming a mobile grid system and
resource scheduling thereon,” patent- United States Patent and
Trademark Office, US 8,296,765 B2; Issued October 23, 2012.

[16] H. Kurdi, M. Li and H. S. Al-Raweshidy, “A generic
framework for resource scheduling in Personal Mobile Grids
based on honeybee colony,” in Proc. of the IEEE 3rd
International Conference on Next Generation Mobile
Applications, Services and Technologies IEEE NGMAST '09,
pp. 297-302, Sep. 2008, Cardiff, UK.

[17] A. Legrand, M. Quinson, H. Casanova and K. Fujiwara,
“The SIMGRID project simulation and deployment of
distributed applications,” in Proc. 15th IEEE Int. Symp. High
Performance Distrib. Comput., 2006, pp. 385-386.

[18] OPNET Technologies [online]. Available:
http://www.opnet.com/, [accessed Dec. 11, 2013].

[19] E. Frachtenberg and D. G. Feitelson, “Pitfalls in parallel
job scheduling evaluation,” in Proc. 11th Workshop Job
Scheduling Strategies for Parallel Process., 2005, New-York,
pp. 257-282. http://dx.doi.org/10.1007/11605300_13

[20] H. Kurdi, M. Li and H. S. Al-Raweshidy, “A classification
of traditional and emerging grid systems,” IEEE Distributed
Systems [on line], vol. 9, no.3, pp.1, Mar. 2008. ISSN: 1541-
4922 .

[20] M. Ibrohimovna, and S. H. Groot, “Proxy-based Fednets
for sharing personal services in distributed environments,” in
Proc. 4th ICWMC, 2008, pp.150-157.

[21] W. Li, Z. Xu, B. Li, Y. Gong, “The Vega Personal Grid: A
lightweight grid architecture,” in Proc. IASTED, 2002, pp. 6-
11.

[22] J. Han and D. Park, “A lightweight personal grid using a
supernode network,” in Proc. 3rd Int. Conf. P2P2003, pp. 168-
175.

[23] D. Pearce, J. Dunlop and R.C. Atkinson, “Leader election
in a personal distributed environment,” in Proc. IEEE 16th Int.
PIMRC, 2005, vol. 2, pp. 1307-1311.

[24] J. Dunlop, “The concept of a personal distributed
environment,” Wireless Personal Commun. Int. J., vol. 42, no.
3, pp. 431-444, 2007. http://dx.doi.org/10.1007/s11277-006-
9186-7

[25] Akogrimo [online]. Available:
http://www.mobilegrids.org/, [accessed Dec. 11, 2013].

[26]Condor Project [online]. Available:
http://www.cs.wisc.edu/condor, [accessed Dec. 11, 2013].

[27] Legion: A Worldwide Virtual Computer [online].
Available: http://legion.virginia.edu/, [accessed Dec. 11, 2013].

[28] DSTC Nimrod/G [online]. Available:
http://www.csse.monash.edu/~sgaric/nimrod/, [accessed Dec.

Heba Kurdi / Journal of Ubiquitous Systems & Pervasive Networks, 6 (2015) 01-10

10

11, 2013].

[29] R.Chang, J.Chang, P. Lin, "An ant algorithm for balanced
job scheduling in grids", Future Generation Computer Systems
25, pp. 20–27, 2009.
http://dx.doi.org/10.1016/j.future.2008.06.004

[30] J. Taheri, Y. Lee, A. Y. Zomaya, H.Siegel, “A Bee Colony
based optimization approach for simultaneous job scheduling
and data replication in grid environments,” Computers &
Operations Research, Volume 40, Issue 6, June 2013, Pages
1564-1578, ISSN 0305-0548,

[31] H. Kurdi, “Personal Mobile Grids with a Honeybee
Inspired Resource Schedule,” PhD thesis, School of
Engineering and Design, Brunel University, Uxbridge, UK,
2010.

[32] The Dutch Freeband Communications Project PNP2008
[online]. Available:
http://www.utwente.nl/ctit/research/projects/concluded/bsik/fre
eband/projects/pnp/, [accessed Dec. 11, 2013].

[33] j. Paul, Darby III, N. Tzeng, "Decentralized QoS-Aware
Checkpointing Arrangement in Mobile Grid Computing," IEEE
Transactions on Mobile Computing, vol. 9, no. 8, pp. 1173-
1186, Aug. 2010, doi:10.1109/TMC.2010.80
http://dx.doi.org/10.1109/TMC.2010.80

[34] Valderi R. Q. Leithardt, David Nunes, Anubis G. M.
Rossetto, Carlos O. Rolim, Cláudio F. R. Geyer, Jorge Sá
Silva, Privacy Management Solution in Ubiquitous Environments
Using Percontrol, Journal of Ubiquitous Systems and Pervasive
Networks, Volume 5, Issue 2, pp. 21-28, 2014.
http://dx.doi.org/10.5383/juspn.05.02.004

[35] Christina Strohrmann, Julia Seiter, Gerhard Tröster, Feedback
Provision on Running Technique with a Smartphone, Journal of
Ubiquitous Systems and Pervasive Networks, Volume 5, Issue 1, pp.
25-31, 2014. http://dx.doi.org/10.5383/juspn.05.01.004

