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Abstract

In this contribution, we propose a robust highliesve channel estimator for downlink Long Termoltition (LTE)

multiple-input multiple-output (MIMO) orthogonal dguency division multiplexing (OFDM) system usingural

network. The new method uses the information predidy the reference signals to estimate the totgjuency
response of the channel in two phases. In thegdhiase, the proposed method learns to adapt tchdrenel variations,
and in the second phase it predicts the channelmmters. The performance of the estimation methotérims of
complexity and quality is confirmed by theoreticalalysis and simulations in an LTE/OFDMA transnusssystem.
The performances of the proposed channel estinaaocompared with those of least square (LS), mecieedback
and modified Wiener methods. The simulation ressiitsw that the proposed estimator performs bettan the above

estimators and it is more robust at high speed litybi
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1. Introduction

The Long Term Evolution (LTE), also known as Evalve
Universal Terrestrial Radio Access (E-UTRA), is epstoward
the 4th generation (4G) of mobile radio technolegi®
increase the spectral efficiency and to obtain digh
throughput. The transmission scheme for E-UTRAaised on
multiple-input multiple-output (MIMO) orthogonal équency
division multiplexing (OFDM) technique that is moresilient
against severe channel conditions and support tiégha rates
transmission capabilities [1].

The combination of powerful technologies like OFDand
MIMO techniques in the same system increases spectr
efficiency, and improves link reliability withoutdditional
bandwidth or transmit power [1]. MIMO concept cae b
implemented either for increasing the system capaby
sending different sets of data at the same timeutitr the
different MIMO antennae. Otherwise, the advantaig®lid10
diversity can be used to overcome the channel dadin
sending the same signals through the different MIMO
antennas. Efficient implementation of MIMO-OFDM t&® is
based on the Fast Fourier Transform (FFT) algoritama
MIMO encoding, LTE system use Alamouti Space Fregye
Block coding (SFBC) as MIMO coding.
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The LTE standard proposes the use of the OFDMA sacce
technique in downlink, which basically distributibe symbols
on a large number of carriers. By implementing tiés/ access
technique in the context of mobile broadband trassion,
new approaches for time and frequency synchrooizati
equalization and channel estimation are neededrfi§.use of
neural network has been deployed in OFDM system reasd
not been explored in MIMO-OFDM system with diffeten
neural network architectures [2],[3].

In this contribution, we propose a new estimatiechhique for
an LTE downlink highly selective channel using neeural
networks architecture and pilot channels. The fplacof this
method is to exploit the information provided by treference
signal to estimate the channel frequency respditez paper is
organized as follows:

In section Il, the OFDMA-based transmission systé&n
described. The multipath mobile radio propagatidrannel
model and LTE MIMO-OFDM system are described irtisec
Il and 1V, respectively. Then, three commonly usgtnnel
estimation methods; Least Square (LS) [4], estiomativith
decision feedback [5], modified Wiener filter [6hdh the
proposed neural network-based mobile radio channel
estimation technique are presented in section Ws&guently,
the performances of the proposed channel estimsgtimique
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aredemonstrated via simulations and a comparativeysititth
the well-known mentionedestimation methods is al:
conducted in section VI. Finally, conclusion areawir In
section VII.

2. Downlink LTE System M odel

Downlink LTE system is based on OFDMA air interf:
transmission scheme. OFDMA is a combinatiolOFDM and
TDMA [1]. The basic idea of OFDMA systems is the divis
of the frequency spectrum into several orthogondlcarriers
using the OFDM multiplexing techniqué&hose orthogonal
frequency subcarrierare shared among users usiTDMA
access technique.

A scheme of a baseband OFDM system is shown inr&idy
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Figure. 1: Baseband OFDM system mor

Let us consider an OFDM system which comprN, carriers,
occupying a bandwidtB. The OFDM symbols are transmitt
in time T, including a cyclic prefix of a duration denoteyd

T,. The total duration of one OFDM symbo T,, = Ts — Ty,

The spacing between two adjacent carriers is itelicdy
6f = 1/T,. The addition of a cyclic prefix longer than 1
temporal dispersion of the transmission channeliged tc
prevent interference between symbols and to pre:
orthogonality between carriers [7]Figure 1 shows the
baseband OFDM system modéf;, denote the comple
symbols of a downlink LTE system where-QAM, 64-QAM

and QPSK modulations can be used [B]t) is the filter
impulse responsdy(z,t) represents the impulse response of
mobile radio transmission channel, aift) is an additive whit
Gaussian noise (AWGN) with power spectral derNy2.

Lety = [XO Xl PP XNC_l]T and? = [YO,I yl,I PR ch_l]T

denotethe input data of IDFT block at the transmitter dhe
output data of DFT block at the receiver, Espely.

Letﬁ = [ho h’l P hNC_l]T andn = [no ng... nNc_l]T

denote the sampled channel impulse response and M\
respectively. Define the input matriX = diag( X ) andF is
the DFT-matrix [9]

AR A (A
Wyt oWt L
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where,N is the FFT size and

Wik = (1/VN)exp=/2rik/N) (2)

Also, the channel frequencgsponse is given
H=DFTy(h) =Fh, 3)

and the noise in frequency domain is represent
N=Fn. “

By assuming that the cyclic prefix length is larger rthihe
channel delay spread, the interference ben the OFDM
symbols can be eliminated. Therefore the OFDM retk
signal is expressed by [9]

Y = DFTy(IDFTy(X)® h +7) = XFh+N
=XH+N. 5)

The relationship between thaput and the output for ea
OFDM subcarrier can be written

Yii = Hii Xpei + Nii- (6)

For a given symbdl, Hy; is the channel frequency responst
the subcarrief;, given by

fu = fe + K/ Ty Q)

Where,f. is the carrier frequency an N, ; are obtained by
applying a DFT to the vectat wheren,; is the result of
samplingn(t) at time T},; given by the following equatic

, kT,
Tyi= iTs+ Ty + - (8)

As shown in Fig. 2, each LTE radio frame durg is 10 ms
[8], which is divided into 10 subframes. Then, eaabframe it

further divided into two slots, each of 0.5ms diomat

one Radio Frame (10 ms)

¢ 1

)
1one SubFrame (1 ms)

> |
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Figure. 2: LTE Frame structur(10].

The physical resource block (PRB) consists olsubcarriers
with frequency spacing of 15 kHz. In time domaiacte PIB

has one slot with either 6 or 7 OFDM symbols, dej@m on
the chosen cyclic prefix, extended or normal. Thaagmissior
parameters of the LTE/OFDMA standard are shownhia
following Table 1 [11].

Tablel1: LTE OFDMA Parameters11].

Transmission BW (MHz) l.25| 25 | 5 | 10 | 15 | 20
Sub-frame duration (ms) 0.5
Sub-carrier spacing (kHz) 15
Sampling frequency 1.92 3.84 7.68 15.36 23.04 | 30.72
FFT size N) 128 256 512 1024 1536 2048
Number of o_ccupied sub- 76 151 301 601 901 1201
carriers
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Table 2: Extended Vehicular A model (EVA) [12].

Excesstap delay [ns] Relative power [dB]
0 0.0
30 15
150 -1.4
310 36
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710 o1
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Figure 3: MIMO-OFDM System model

3. Multipath Channel Model

The channel impulse response is given by [6]

h(t,t) = XM -3 (@) 8t — 1) (1)

here, M denotes the number of multipaths,(t) andz,, are
the impulse response and the multipath delaybethannel,
respectively. The channel frequency respofgg for the
k" subcarrierf;, is given by the Fourier transform of the
channel impulse response. Table 2 shows the spa@din
parameters of an extended vehicular A model (EVAhthe
excess tap delay and the relative power for eath phthe
channel. These parameters are defined by 3GP Pasthfic].

4.LTEMIMO-OFDM System

Figure 3 shows a MIMO-OFDM system model. The
modulation block is used to modulate the origin&haby
symbol 4 using the complex constellation QPSK, 16-QAM or
64-QAM according to the LTE standard [12]. Multiple
antennas can be used at the transmitter and recéiegefore
multiple-input multiple-output (MIMO) encoders ameeded to
increase the spatial diversity or the channel dapa®lIMO
systems can be implemented in a different ways htaio

either a diversity gain to combat signal fadingt@mobtain a
capacity gain.

Generally, there are three types of MIMO receivas
presented in [13]. The first improves the poweicefhcy by
maximizing spatial diversity like space-time blododes
(STBC). The second type is used to increase the itgptor
example V-BLAST. Finally, the third type exploits eth
knowledge of the channel at the transmitter. Thén,
decomposes the channel coefficient matrix usinguar value
decomposition (SVD) and uses these decomposed rynita
matrices as pre- and post-filters at the transmitted the
receiver to achieve maximum capacity.

In our case we are using Alamouti STBC coding. TiDM

modulation scheme consists of transmitting a blaak
information symbols in parallel on channel subeasi An
OFDM modulator can be easily and efficiently impésrted
using the inverse discrete Fourier transform (IDBf)a block
of information symbols. Each block of IDFT coeféiots is
typically preceded by a cyclic prefix (CP) with I¢hat least
equal to the channel delay spread to prevent isyenbol

interference (ISI) that can be caused by multipeltiannel
propagation. Commonly, a pilot sequence insertionsisd in
the channel estimator to predict a refined charfiregjuency
response at the receiver to equalize for the champairments
and consequently to estimate the transmitted signal
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5. Channel Estimation

5.1. Least Square Channel Estimation (LS)

Least square channektimator is obtained by minimizing t
square distance between the received siY and the
transmitted signaX as follows [4]

"fl,iTn](H) = minyr {|?— X. H |2}
=ming {(V-%.H) (T-x.H)} (10

where, (.) T is the conjugate transpose oper:

By differentiating expression (10) with respectﬁT and
finding the minima, we obtain

;—TJ(H)=—§T7+§TKE=O. (11)
H
Finally, the LS channel estimation is given 4]
He=x1ly=|% &1 MT (12)
LS A Xo X1 e XNC,1 .

In general, LS channel estimation technique for ®F&ystem
has low complexity but it suffers from a high mesquare
error [2].

5.2. Estimation with Decision Feedback

OFDM dhannel estimation with decision feedback uses

pilots to estimate the channel respoHse= {ﬁk,i} using LS or
MMSE algorithms [3]. Herek = {0,...,N — 1} denotes the
k" subcarrier and theit"symbol For each coming symb
and for each subcarrier, the estimated transmitadbol is
found from the previouH, ; according to théormula

4 Yiit
Riinn =752, (13)

The estimated received symb¢& ;.,} are used to make tl
decision about the real transmitted symbol va{Xj ;,}. The
estimated channel response is updated by [5]

Hiivr = Yiirr / Xivr- (14)
Consequentlyiy ;44 is used as a reference in the next sym

i+2, for the channel equalization.

5.3. Modified Wiener Filter

The advantage of this technique is that there imeed foi
continuous transmission of training data, justraylsi OFDM
pilot symbol at the beginninof each frame is sufficienThe
principle of this technique is shown in Figure

r "'" B ‘:n B .’.n B -
Vi of iy . ‘ Voi N Yoies —» oo
Y Hy N Vii N LY » . El_s’+1
LS KL KL
,o By Pyovi () Pyt g
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Figure. 4: Modified Wiener Estimat.

For a given symbol, the prediction of the channel frequel
response at+1 is given by the ratio between the recei
symbol, Yy ;, and the transmitted symbX; ; , as follows

Hei =25 = Hy 4y, (15)

Xk,i

where,n, ; is the estimation error.

A Karhonen Loeve transformK(T) is applied to H,; to
separate the multipath channel space from the rapaee, tc
obtain the output vectdf; with uncorrelated compone! Vi
expressed as [6].

Vk.i = (ﬁi|v(k)) (16)

where(.|.)is the Hermitian product operator {v(")}::_;

are theN eigenvectors of the covariance maiR y of the
channel vectoH,;.

At the output of the KLblock, the corresponding N,
elementary linear Wiener predicto(W,, W, ..., Wy_,) are
used for the estimation ofV;,, from previous
observationsV, ;(i —p < j < i) according to the follwing
formula [6]

~ _ k) ~ t_(k
Vivs = X02b @l Vi = a®" 28 (17)

where, P is the filter length assumed to be identical fdr
predictor P, , a® = (al?,..,a®)t is the k™ filter
coefficient and Zi(k) = (Vi jVii-1, - Vii—p+1)" denotes the
vector containing the lagi samples at the output of the |
block. Finally, an inverse KII@nsform(lKL) is applied to

estimate the channel coefficierts, ;.
5.4. Proposed Neural Network Channel Estimation

5.4.1. Principle

The principleof the proposed estimation technique is insp
from the use of shape recognition in neural netwdrke
estimator uses the information provided by thetpilof suk
channels to estimate the total channel frequensyorese. Th
estimation technique uses input the information given by t
pilots of each sulshannel. The input of the neural netwcP ,
is defined by the following equatic

P=xpi7P=|1 ™ ey )
= XPy XP, XPanp, -1
T
=[P P Paa | (18)

By making use of neural network, the following tewil be
estimated

A=Xx1y = ﬁ ﬁ YNC_I ]T
- Xo X, 7 XN, -1

Ava | (19)

X denote the transmitted OFDM symbols matY are the
received OFDM symbols vectax,, are the transmitted OFDM

pilot, and 7,, are the corresponding received OFDM pil

=[Ao Ay

The estimated output of the neural Network is gilg

T
Ay ten-1] (20)
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At the output of the channel equalization, we abtie
following expression

—~ -1 T
ag(@)) T=[2 4 Ye=1
(d“‘g (A)) y‘[ﬁo i, AM]
_ YO Y1 YNC—I ’
AO + € Al + e o ANC—l + eNC_l
Y, Y, Yo 1 1" _
=2 L ”Cl] ,(if e~ 0)
Ay Ay Ay,—1

= (diag(Z))_l Y
= (diag(Z))_l X A ,because (A=X"1Y)

=X @Y

The proposed method is based on Perceptron typeewdal
network having two separate phases i.e., learnimase and
estimation phase.

The adopted architecture of neural network is cdisethosen
after multiple tests of convergence by minimizihg tearning
time and keeping low implementation complexity,oirder to
increase the overall system performance.

The output of a single neuron is given by the feilg
equation

2Np_y

Aj = f(zizo

Equation (21) can be presented in matrix form #evie

A=W/ P+b). @3)

Here,WjT = [ Wio Wi1 . . . Wj'ZNP_l]' wj; is a value of
the synaptic weight connecting the stimulisto the
neuronyj, P; is the input stimuluséj is the neuron output in the
range of(0 <j <2 N, — 1), because there alg real part of
A; andN, imaginary part ofi;, f is the neuron output linear
function andb; is the bias of the neurgn

5.4.2. Learning
Xxp H
v '

X Pilot
Insertion

N
X O 7
\—l %

Z . Recf())i\l/siing
P

)

End of
Learning

Learning

Figure. 5: Schematic diagram of the learning phase

The estimator learning operation consists of changihe
values of interconnection weights using learnirgpethms for
obtaining the desired performance. The learningrétym in
our proposed neural network is the efficient gratiback
propagation which minimizes the average squareg eetween

the output;l and4, by modifying the weights values. Figure 5
shows the principal of the learning phase.
The total squared error (for all output neur@ns) defining
the network performance is given by:
1 oN;—1o2N.~1 2
E =N Xl Zjso (¢f)", @4

where,e} is the error on thgth neuron output and is the
example of the training set, calculated by

—T —1 ~
ef=f(W; P )-al =4-4 @5

The weightstTare updated with the following algorithm [2]:

Learning algorithm for the neural network
1 — Initialize weights to low magnitude rantwalues.

2 - Calculate the weight changes during an iteration
W, = -2u5iyte £ (W P) P @9

3 - Update synaptic weights of each network
W (k + 1) = W;(k) + AW, (k). @7)

4 - If the error is large then it returns teep 2, else we
continue to Step 5.

5 - Desired performance of the neural networ

5.4.3. Estimation

After completing the learning phase, the networsusie input
data from the pilot channelsto estimated. Subsequently, the
equalization followed by a decision estimate of @EDMA
symbols. For a single learning operation, the rleneawork
estimates a large number of OFDM symbols in theyeaof
7000 symbols, corresponding to 50 radio LTE frames.

6. Simulations Results

6.1. SISO Case

OFDM SISO System is simulated using the following
parameters shown in Table 3. These parametersaaed ton
downlink LTE system.

Table 3. Smulations Parameters[11],[12] and [14].

Parameters Specifications
Constellation 16-QAM
Mobile Speed (Km/h) 120/350
T, (Us) 72
f: (GHz) 2.15
§f (KHz) 15
B (MHz) 5
Size of DFT/IDFT 512
Number of paths 9

The performance of the proposed estimator is coegparth
other well-known estimation techniques. In this tpaf
analysis, we are interested in comparing the pmegos
algorithm with the well-defined LS [4] (it is theingplest
method in terms of complexity and is used for corngoa to
evaluate the execution time of the proposed mejhadsision
feedback [5] (typically performs better than LSXanodified
Wiener technique [6] (commonly optimal filter arslused to
evaluate the performance of the proposed method).
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Figure 6 presents the variations in time and igdency of the rpanns Ghz, Bw = 5 Mhz, Channel: EVA, Mobile speed=350 Km/h, Madulation 16-0AM
channel frequency response under a mobile speed &20

Km/h. While, figures 7 presents the variationsimet and in
frequency of the channel frequency response undeolale

speed equal to 350 Km/h. From these two scenarm@semark 0
that the channel variations are large in the prmsef high
channel selectivity and frequency shifting. Thusbust
algorithms for channel estimation are needed.

; il - :
C RN el

—+— Perfect Estimation

—%— Meural Network Estimation
Modified Wiener Filter

=G~ Feedback Estimation

[+ LS Estimation

sutcarrier

-
-
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n\\““.»w/ g '—‘, - W I S N U N
e m / : - 0 5 10 15 20 25 30 ESS
g 100 - - .
FRRLER ‘MX\DJD/ = B R s ) el
requency K. Ny geurer Time i, Ny, Tiene i, Ny . . .
’ Figure. 9: BER as a function of ES/NO at a mobile speegb6fKm/h
in SISO case.

Figure.6: Variations in time and in frequency of the charfmeduency
responsémobile speed 420Km/h).
Table 4 shows the performance of our estimatoreims of

simulation complexity in time and in terms of numbaf
matrix operations. In fact, in the estimation phake proposed
method needs just one multiplication matrix andunexs just
64.3us to estimate one OFDM symbol.

Table4. Complexity of Estimation Algorithms per OFDM Symbol

Frequency kM

Methods Modified . Neural Network
Matrix Ls | wiener | DeCisiON Estimator
Operations Filter |Fe€9PacK [eaming| Estimation
Frequency K, Ny Inversion 1 2 2 2 0
Figure. 7: Variations in time and in frequency of the channel Multiplication 1 6 2 1 1
frequency respongenobile speed 350 Km/h. Addition 0 3 0 1 0
Figure 8 shows the variation of BER as a functiorEgN,,. Soustratction 0 0 0 1 0
Noticeably, the proposed method outperforms all eoth - X
estimators, for example at a BER =& gain of 5 dB over the g S|tr_nullagon bol 2'55 52128'8 }nsl 721'47"55 - 45'3”5
modified Wiener filter is obtained. At high mobjlitthe same uration/ Symbool | k .
results are confirmed by figure 9.
fo.= 216 Ghz, Biw = 5 Mhz, Channel- EA, Mobile spesd=120 Krvh, Madulation 15-QAN 6.1. MIMO Case
10

LTE MIMO-OFDM downlink system with parameters shown
in Table 3 is simulated. Also, these parametersbased on
downlink LTE system and the Alamouti space timechlo
coding (STBC).

The performance of the proposed estimator is alsapared to
the MIMO case and to other estimation techniquiks; LS [4],
: ‘ decision feedback [5] and modified Wiener methdd [6

_| =% Perfect Estimation

E=22| —e— Neural Metwork Estimation : : Figure 10 shows the variations of BER as a functibBgN,.
Madified WViener Filter : : Noticeably, the proposed method in MIMO case penfor
| L sk Betmatin [ ' better than other estimators, for example at BER 4 @ain

of 3 dB over the modified Wiener filter is obtainett high
mobility and in MIMO case, the same results areficmed in

figure 11.
: ; : ; ; : The simulation complexity in time and in terms afmmber of
1 i i i i i i matrix operations for the MIMO case is comparabieseen
v ° " 1,558,ND in déu * H * less when compared to the other techniques as simotable 4,
because the learning phase of our proposed estiisadone in
Figure.8: BER as a function of&, for a mobile speed d20Km/h parallel for each channel between the transmittardeceive
in SISO case. antennae.
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fp =215 GHz, Bw = 5 MHz, Channel EVA, Mobile speed = 120 Km/h, Modulation 64-QAM
10

Perfect Estimation

BER

—%— Neural Metwark Estimation |-
Modified Wiener Filter
=+=0== Feedback Estimation

0 b 10 15 20 25 30 35
Es/NO in dB

Figure. 10: BER as a function off\, at a mobile speed 850
Km/h in MIMO case.
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Modulation 16-
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- Perfect Estimation --
*| —%e— Neural Network Estimation | _

Modified Wiener Filter
0~ Feedback Estimation
v LS Estimation

BER

] 1 N
§ 10 15 20 25 30 35
Es/NO0 in dB

Figure. 11: BER as a function of &\, at a mobile speed 8650
Km/h in MIMO case.

7.Conclusion

In this paper, a new neural-network-based chanstihation
technique for a highly selective downlink MIMO-OFDM E
system is introduced. The proposed channel estmatiethod
uses reference signals of OFDMA system to estintage
channel variations both in time and in frequendyisTmethod
is based on a learning process that uses a traseiqgence for
adaptation to achieve a desired performance.

Comparative study with robust and well establistesthhiques
such as the LS, decision feedback and Wiener eitima
methods have been conducted. Simulation results shearly
the high performance of the proposed neural-netbaded
LTE downlink channel estimation technique when carefd to
these standard methods. Also, the performanceegpithposed
estimator, in terms of computation complexity anohniver of
required operations, are evaluated. Overall, omee rteural
network learning phase is performed~T721.4 us ), the
proposed technique outperforms in terms of complexi
compared to the considered estimators. In fact, the
estimation phase, the proposed method need$4&us to
estimate one OFDM symbol. However, the modified Nere

filter methods need302.8 us to estimate one OFDM symbol.
Particularly, for a highly selective LTE downlingsgem, the
obtained results are very promising and further manative
studies will be performed.
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