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Abstract 
The Low-Power Wireless Personal Area Networks (LoWPANs) have been recognized as a promising technology 

for ubiquitous and pervasive computing systems. However, LoWPAN technology is still open to being adapted to 
existing interoperability mechanisms defined for the Internet. Service-Oriented-Architecture (SOA) is one of the key 
paradigms that enables the deployment of services at large-scale over the Internet domain and its integration with 
LoWPANs has opened new pathways for novel applications and research. Despite the need to integrate SOA with 
LoWPANs, only handful efforts are underway to achieve the goal. In this paper, we discuss the integration of LoWPANs 
with Service-Oriented-Architecture (SOA) for seamless provisioning of services in LoWPANs, especially considering 
the future of LoWPANs, i.e., IPv6-enabled LoWPANs (6LoWPANs). We first present an overview about the general 
concepts of SOA and its applicability onto low-power devices. Then, we discuss 6LoWPAN, a milestone protocol that 
bridged the gap between low-power devices and the IP world and discuss the advantages, challenges and opportunities 
for porting SOA over LoWPANs. We also present the main research efforts that contributed to featuring the integration 
LoWPANs with SOA and we draw a research roadmap on potential research directions and challenges for achieving an 
efficient coupling among LoWPANs and SOA. 
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1. Introduction 

Cyber-Physical Systems (CPS), Cooperating Objects and 
Internet-of-Things (IoT) represent, these days, the current 
trends of computing philosophy. This new paradigm goes 
beyond the traditional vision of considering a network as a 
digital data sharing infrastructure decoupled from its 
environment to considering a network as a physical 
objects/events sharing infrastructure where data is no longer 
decoupled from its physical environment. This new vision gave 
rise to the concept of ubiquitous and pervasive monitoring (and 
control) applications used in different areas such as smart home 
automation, industrial monitoring, healthcare, intelligent 
transportation systems, surveillance systems, etc. Wireless 
Sensor Networks and RFID systems are the key enabling 
technologies for these pervasive systems, as they provide an 
interface between the physical world (environment) and the 
digital and cyber worlds (computing devices and the Internet). 
While these technologies have been evolving rather 
independently, there is currently increasing trends towards 
integrating them all together. The Internet, always known as 
the core backbone for large-scale distributed systems, is 
considered the main prospective mediator to interconnect all 
these heterogenous systems. Though LoWPANs have been 
considered as an essential technology for pervasive 
environments, the recently emerging IPv6 over Low-Power 
Wireless Personal Area Networks, (6LoWPAN) standard has 

given rise to the concept of Wireless Embedded Internet [1]. It 
gave rise to a new paragon that bridged the gap between low-
power wireless networks and the IP world. 6LoWPANs present 
the key advantage of enabling end-users to remotely and 
seamlessly access low power embedded devices, such as 
wireless sensor nodes, through the Internet using IPv6 as the 
underlying network protocol. This new paradigm opens the 
door to several new challenges, for adapting/adopting legacy 
Internet solution in 6LoWPAN, which are inherited from the 
resource-constrained nature of low-power sensing devices. 
Arguably, 6LoWPAN considers the fulfillment of two main 
requirements namely energy-efficiency and interoperability. 
While the energy issue has been carefully and extensively 
addressed by several proprietary solutions, interoperability has 
been ignored to some extent in earlier design objectives [2]. 
Interoperability requirement has been addressed through the 
adaptation of Internet mechanisms to the requirements of 
WSNs. While 6LoWPAN achieve interoperability at Network 
Layer, Service-Oriented Architecture (SOA) has been 
considered for the same purpose at the application layer. In 
fact, Service-Oriented Architecture (SOA) is one of the core 
mechanisms for service deployment in the Internet that has 
been adapted in WSNs for making easier and more effective 
service deployment. It possesses an architectural style 
encompassing a set of services for building complex systems 
from existing components. As an architectural evolution and a 
paradigm shift in systems integration, SOA enables the 
discovery, access and sharing of the services, data, 
computational and communication resources in the network for 
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multiple users. It also allows rapid and cost-effective 
composition of interoperable and scalable systems based on 
reusable services exposed by these systems. SOA inherently 
supports two major requirements: heterogeneous 
infrastructures and run-time adaptability, which are essential 
for large-scale cyber-physical systems in which multiple 
applications run over diverse platforms and adopt different 
technologies. 
Though SOA has become a cornerstone in many recent 
research efforts, many of its elegant potentials have not been 
sufficiently explored in LoWPANs. In this paper, we tackle 
integration of SOA with LoWPANs and discuss the underlying 
challenges and benefits. We especially focus 
6LoWPANtechnology because it is essential the future of 
LoWPANs, envisioned to create an Internet of Things. Our 
contributions in this paper are to discuss main research efforts 
that contributed to the integration of LoWPANs with SOA, and 
drawing a research roadmap on potential research directions 
and challenges for achieving an efficient coupling among 
(IPv6-enabled) LoWPANs and SOA. 
The remainder of this paper is structured as follows. Section2 
presents the background materials about Service-Oriented 
Architecture and the 6LoWPAN protocol. In Section 3, we 
present the main research challenges towards the integration 
between SOA and LoWPANs with a case study of SOA 
requirements for 6LoWPAN. Section 4 describes a literature 
review about the current efforts of related works that proposed 
solutions to the SOA/LoWPANs coupling to illustrate how the 
raised challenges have been tackled. Finally, Section 5 
concludes the paper and presents research roadmap and 
promising research areas that pertains to SOA and LoWPAN 
integration. 

2. Background  

2.1. Service Oriented Architecture 
The SOA paradigm defines a software architecture that 
comprises loosely coupled distributed components cooperating 
through a communication conduit, which enables the 
construction of composite services. SOA aims to bring about 
component reuse, irrespective of implementation language or 
host platform, and as such it can be thought of as simply an 
extrapolation of good software engineering practices, taking us 
from the class reuse concept to service reuse concept. Thus 
SOA typically encompasses the following features: 
 
• Component architecture: SOA is based on reusable 

software components enabling to build scalable 
heterogenous (i.e. platform- and language-independent) 
service architecture. 

• Loose coupling: The principle of Service Loose Coupling 
promotes the independent design and evolution of a 
service’s logic and implementation while still 
guaranteeing baseline interoperability with consumers that 
have come to rely on the service’s capabilities. 

•  Platform independence: This feature has been achieved 
by the adoption of standards, which have been the key 
mechanism enabling previously incompatible technologies 
work cooperatively across a wide range of different 
platforms. Single services can interoperate with other 
without depending on specific platforms or programming 
languages. 

• Transparency: It is ensured by decoupling service 
functionalities from their actual implementation. 

•  Flexibility: SOA must ensure flexibility so as a system 
would be able to deal with dynamic changes of its 
configuration and behaviour according to varying 
requirements.  
It results that the use of SOA enables to share, integrate 
and cooperate heterogeneous hardware and software 
components; Thus, distributed applications can be 
achieved with lower cost, better overall system utilization 
and performance. This makes it easier and possible for 
users to seamlessly access shared data, resources and 
functionalities that are not locally available. 

2.1.1. SOA: principles 
The main elementary concept in SOA is the service. A service 
is the mechanism through which entities that offer capabilities 
(service providers) and entities with specific needs (service 
requester/consumer) can interact. The interaction with services 
is regulated by a set of basic mechanisms that allow offering, 
discovering, interacting with and using a service. A service is 
accessed by means of a service interface, which comprises the 
specifications of how to access the underlying capabilities. 

SOA uses the Find-Bind-Execute paradigm as shown in 
Figure 1. 
 

 
Fig. 1. The Find-Bind-Execute Paradigm 

 
In this paradigm, service providers register their service in a 
public registry. This registry is used by consumers to find 
services that match certain criteria. If the registry has such a 
service, it provides the consumer with a contract and an 
endpoint address for that service. In a typical scenario, a 
service provider hosts a network-accessible software module, 
which represents an implementation of a given service, and 
provides a service description through which a service is 
published and made discoverable. A client discovers a service 
and retrieves the service description that will be used to bind to 
the provider and invoke the service. 
For transparency purposes, a service is opaque in the sense that 
its implementation is typically hidden from the service 
consumer except for (1) the information and behavior models 
exposed through the service interface and (2) the information 
required by service consumers to determine whether or not a 
given service is appropriate for their needs. 

2.1.2. Web services 
Web Services (WSs) have been emerging as the leading 
implementation of SOA upon the Web. WSs have added a new 
level of functionality for service description, publication, 
discovery, composition and coordination extending the role of 
the Web from a support of information interaction to a 
middleware for application integration. 
The basic Web Service protocol stack typically comprises four 
protocols: 
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• Service Transport Protocol: it is responsible for 
transporting messages between network applications. It 
includes basic application-layer protocols such as HTTP, 
SMTP, FTP, as well as the more recent Blocks Extensible 
Exchange Protocol (BEEP). 

• XML Messaging Protocol: it is responsible for encoding 
messages in a common XML format so that they can be 
understood at either end of a network connection. 
Currently the commonly used protocols are XMA Remote 
Procedure Call (XML-RPC), WS-Addressing, and Simple 
Object Access Protocol (SOAP). 

• Service Description Protocol: it is used to describe the 
public interface to a specific Web Service. The Web 
Services Description Language (WSDL) interface format 
is typically used for this purpose. 

• Service Discovery Protocol: it centralizes services into a 
common registry such that network Web Services can 
publish their locations and descriptions, and makes it easy 
to discover what services are available on the network. 
Universal Description Discovery and Integration (UDDI1) 
protocol was specified for this purpose. 

2.1.3. REST technology 
REpresentational State Transfer (REST) [3, 4] was originally 
introduced as an architectural style for building large-scale 
distributed hypermedia systems. This architectural style is 
rather an abstract entity, whose principles have been used to 
explain the excellent scalability of the HTTP 1.0 protocol and 
have also constrained the design of its following version, 
HTTP 1.1. Thus, the term REST is very often used in 
conjunction with HTTP. The REST architectural style is based 
on four principles: 
1) Resource identification through the Uniform Resource 

Identifier (URI). A RESTful Web service exposes a set of 
resources which identify the targets of the interaction with 
its clients. Resources are identified by URIs, which 
provide a global addressing space for resource and service 
discovery. 

2) Uniform interface. Resources are manipulated using a 
fixed set of four create, read, update, delete operations: 
PUT, GET, POST, and DELETE. PUT creates a new 
resource, which can be then deleted using DELETE. GET 
retrieves the current state of a resource in some 
representation. POST transfers a new state onto a 
resource. 

3) Self-descriptive messages. Resources are decouple from 
their representation so that their content can be accessed 
in a variety of formats (e.g., HTML, XML, plain text, 
PDF, JPEG, etc.). Metadata about the resource is available 
and used, for example, to control caching, detect 
transmission errors, negotiate the appropriate 
representation format, and perform authentication or 
access control. 

4) Stateful interactions through hyperlinks. Every interaction 
with a resource is stateless, i.e., request messages are self-
contained. Stateful interactions are based on the concept 
of explicit state transfer. Several techniques exist to 
exchange state, e.g., URI rewriting, cookies, and hidden 
form fields. State can be embedded in response messages 
to point to valid future states of the interaction. 

In [4], authors used architectural principles and decisions as a 
comparison method to illustrate the conceptual and 
technological differences between RESTful Web services and 
WSDL/SOAP based Web services. Authors concluded that: On 
the principle level, both two approaches have similar 
quantitative characteristics. On the conceptual level, less 

architectural decisions must be made when deciding for WS-
Web services, but more alternatives are available. On the 
technology level, the same number of decisions must be made, 
but fewer alternatives have to be considered when building 
RESTful Web services. For more details, the reader is referred 
to  [4]. 

2.2 6LoWPAN: The future of LoWPANs 
Tailored for low data rate applications on cheap devices, IEEE 
802.15.4 standard redefines communication paradigm from 
networking (in literal sense) to connectivity in metaphoric 
sense. In this regard, IEEE-steered initiative of IEEE 802.15.4 
standard befits really well as a candidate for ubiquity. These 
devices are poised to offer a broad range of services, such as 
smart homes, ubiquitous office environments etc. However, in 
order to exploit the full potential of ubiquitous features of these 
devices, we must connect them to the Internet. 
In fact, the motivation for IP connectivity for LoWPANs is 
manifold: 
• The pervasive nature of IP networks allows for the use of 

existing infrastructure and information resources, i.e. the 
Internet. 

• IP provides extensive interoperability for other networks, 
e.g., sensor networks, and devices on other IP network 
links, e.g., WiFi, Ethernet, GPRS, etc., which means that 
IP-based devices can be more easily connected to other IP 
networks, without the need for translation gateways. 

• IP-based technologies, along with their diagnostics, 
management and commissioning tools and services, such 
as Network Management (SNMP) [5], Neighbor 
Discovery (ND), Duplicate Address Detection (DAD), 
Router Discovery and Stateless Address Auto-
Configuration (SAA)[6], already exist and are proven to 
be working. 

• There exist established security mechanisms for 
authentication, access control and firewall for IP. It is 
worth mentioning that network design and policy 
mechanisms determine the access control and not the 
technology. 

• For IP, it exists established Application Level data models 
and services, such as for instance HTTP, HTML, SOAP, 
REST etc. Additionally proxies’ architectures for the 
higher level services are also available. 

• IP supports end-to-end reliability as well as link 
reliability. 

•  IP provides most industrial standards support. 
Though the integration of IP with IEEE 802.15.4 brings in 
generous convenience for the users, it also presents a plethora 
of challenges to 6LoWPAN designers and implementers. These 
challenges owe greatly to the fact that both networks and in-
network devices are exorbitantly different. 
The most fundamental difference lies in their packet sizes at 
the link layer. For IEEE 802.15.4 a packet size of 127 octets is 
standardized which, after considering frame header and link 
layers security options, could leave only 81 octets for the upper 
layers. This is obviously far below the minimum IPv6 packet 
size of 1280 octets. An adaptation layer that fragments IP 
packets for an IEEE 802.15.4 network into the transmittable 
size, and reassembles the packets likewise is essential. On the 
device level, IEEE 802.15.4 devices are constrained in form 
factor, most of all in battery, when compared against the peer 
devices in IP domain [RFC assumptions, challenges]. 
Extending the ubiquitous theme of IEEE 802.15.4 to include 
wider accessibility is the slogan of the 6LoWPAN [7], IPv6 
over Low Power Wireless Personal Area Network. 
Standardized by IETF [8], 6LoWPAN integrates IEEE 



Rouached et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 1 (2010) 39-48 

42 

802.15.4 (LoWPAN) with IPv6 with a view to enhance the 
connectivity of IEEE 802.15.4 devices from mere locality to 
the entire globe through the use of IPv6. The basic protocol 
stack for 6LoWPAN is shown in Figure 2. 
 

 
 
Fig. 2. The 6LoWPAN Protocol Stack 
 
6LoWPAN’s ability to sense-compute-communicate-and- 
(possibly) actuate by tiny devices has set-up a new wave of 
applications. Service providers, network operators, and brokers 
have all jumped to join the bandwagon of the new phenomenon 
that is very promising in terms of opening nice markets for 
them. They are convinced to introduce services ranging from 
home automation to telematics that are ’ubiquitous’. This 
means that these services must be cognizant of their 
environments and the devices around them, and must use them 
for value-addition. This ubiquitous paragon stems from the 
Mark Weiser vision two decades ago, allowing it to come to 
reality. 

3. Challenges of integrating SOA in Lowpans 

3.1. SOA Challenges for LoWPANs 
LoWPAN technology has established itself as a vital 
constituent for several future applications; however, this usage 
shall also present a number of challenges in terms of 
interoperability. There are a number of scenarios which can be 
presented as test cases for the need of interoperability, for 
example, a smart home with a set of services like security, 
energy management, assisted living, etc. A home in this case 
would have intrusion senors on doors and windows, smoke 
sensors in rooms, temperature and light sensors for temperature 
control and may be fire sensors connected to fine station. 
Traditionally, each sensor shall be running only one application 
restricting the generic extensibility of the infrastructure. If we 
could access all these sensors (and applications) through a 
common interface, not only we can continue to run the existing 
applications, but we can also create and run more applications 
using the same resources. The necessity, therefore, arises to 
espouse an interoperability architecture that is open and 
extensible, and allows for dynamic integration of services. The 
enabling of an open and extensible architecture requires 
interoperability at network as well as at application level. 
Network layer interoperability can be best achieved using IP; 
therefore, 6LoWPAN is a strong candidate to achieve this 
objective. However, the existing protocol stacks for 6LoWPAN 
do not define policies for ensuring interoperability at service 

(or application) level. The application layer interoperability 
poses bigger challenges. Different types of sensors are 
available, which generate sensor-specific data. The application 
developer must understand and analyze the messages types and 
parameters used in the sensor nodes. One solution is to adopt a 
common specification (e.g. ZigBee, 6LoWPAN), for all the 
sensing devices. This approach may work for a small set of 
devices, but is highly   impractical. 
An alternative approach is to tailor, trim and use existing 
standard services in a lightweight fashion. SOA is a promising 
candidate middleware platform that closes this interoperability 
gap and mediates data exchange between heterogonous sensor 
platforms and Web applications and services in a unified way. 
The SOA, however, brings with it numerous research and 
development challenges for use on low power sensor nodes in 
general and for 6LoWPAN in particular. These challenges 
range from resource constraints of sensor nodes to the 
application space of such networks. In what follows, we 
present the most relevant challenges for integrating SOA in 
LoWPANs: 
Resource constraints. Size and energy consumption are the 
foremost constraints exhibited by LoWPAN sensing devices. 
Add highly limited bandwidth, processing power and memory 
resources and you get the exact picture of resource or lack of 
those. These restrictions allow on limited complexity message 
processing which makes the porting of traditional web services 
and SOA even more challenging. 
• Sensor Node’s Duty Cycle. The sensor nodes are 

generally battery powered and are expected to operate for 
a long duration with minimal duty cycles. It means nodes 
are awake for a certain periods while are ’asleep’ for other 
intervals. This is in much contrast with typical web 
service hosts which are assumed to be always on. 

• Data driven services. While traditional SOAs are based on 
a request-response message pattern, control applications 
running on embedded networks are typically data driven: 
data is acquired periodically at the sensors and pushed to 
connected services. These services produce new data 
based on the received input which is consecutively pushed 
to the next service in the processing chain. 

• Data Life Cycle. Service instances which abstract 
hardware devices, such as sensor services, may be 
used by multiple applications simultaneously. If one of 
these applications changes the state of the service, this is 
visible to other applications. Web service instances on the 
other hand are typically not shared and changes to one 
instance are not visible to other applications. SOAs for 
embedded networks therefore have to provide techniques 
to facilitate multi-user access. 

• XML. Sensor nodes use a low powered radio which has a 
low data rate. The total amount of data sent cannot be very 
large to meet battery life and latency constraints whereas 
the payload of Web Service messages (i.e., SOAP 
messages) is virtually always XML. The grammar of these 
XML documents is specified using XML Schema. The 
advantages of XML are the vast tool support and its 
human-readable format. The downside is that it is very 
verbose resulting in large overhead in terms of size, which 
renders it unsuitable for the use in WSNs. This limitation 
also holds for HTTP as transport protocol for SOAP 
messages. The resulting length of network messages 
which are comprised of HTTP, TCP/IP and XML data 
easily surpasses the maximum packet length and 
bandwidth of radio interfaces available on typical sensor 
nodes. Apart from message length, also the amount of 
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code required implementing HTTP, TCP/IP, and an XML 
parser exceeds the capabilities of sensor nodes by far. 

• Transport. Usually, Web Service messages are conveyed 
using standard application-layer Internet protocols such as 
SMTP, FTP, o (virtually always) HTTP. Since these 
protocols reside on top of TCP/IP, they also inherently 
carry the overhead introduced by TCP/IP. To avoid the 
overhead of an application-layer protocol, there is also a 
transport-layer binding for TCP. The problem is that none 
of these protocols is applicable for resource-constrained 
devices like sensor nodes. Werner et al. [9], analyze these 
protocols in terms of their communication overhead. For a 
simple parameter- and return-less Web Service call, they 
report an overhead of 560 Bytes for HTTP, 576 Bytes for 
FTP, and 2535 Bytes for SMTP, and 538 Bytes for TCP. 
The authors present PURE [9] as a lightweight Web 
Service transport protocol for resource constrained 
devices. PUR is based on UDP (User Datagram Protocol), 
but avoids its disadvantages by adding a message flow 
control and fragmentation feature. PURE itself has still a 
communication overhead of 66 byte. Since PURE does 
not provide an addressing scheme for Web Services, WS-
Addressing 2 as transport protocol independent addressing 
mechanism has to be used causing additional 
communication overhead. The aforementioned values are 
strictly for this layer, e.g., for HTTP, TCP/IP overhead is 
not included. 

3.2. SOA Requirements for 6LoWPANs 
There exist a number of contrasting technical 

requirements that make the integration of 6LoWPAN with 
SOA extremely challenging. On one hand, 6LoWPANs are 
IPv6 networks; while at the same time, these are sensor 
networks that comprise a large number of nodes with 
extremely limited resources. Existing web services solutions 
for traditional IP networks cannot be applied directly because 
of the resource constraints. For example, a 6LoWPAN node 
may run out of energy causing a fault in the network. This node 
failure is a design feature of sensor networks as compared to 
other networks where it is less expected. As another feature, 
the applications, when designed for traditional networks may 
have restrictions in terms of performance and response time as 
compared to the hardware limitations, when designed for 
sensor networks. The traditional networks run a diversity of 
applications as compared to LoWPANs where the network is 
generally executing a single application in a cooperative 
fashion, though there are various proposals to run multiple 
applications at the sensor network. Furthermore, as an inherent 
WSN characteristic, 6LoWPAN could possibly be a data 
centric network which is different than traditional IP network 
behavior, however, on the contrary, because of IP support, 
there is a possibility that LoWPANs support variety of services 
making it further complicated for network management 
operations. More interestingly, the sensor nodes may be 
deployed in a certain area and because of unpredictable 
situations, configuration errors or even environmental 
conditions can cause the loss of a partial or entire WSN even 
before it starts its operation. This situation is almost impossible 
for traditional IP networks operations. 

In summary, the porting of SOA over 6LoWPAN could 
involve catering of the application level interoperability needs 
for the networks of hundreds or thousands of nodes which 
show enormous resource limitations yet providing IPv6 
support. This situation demands for light-weight (in terms of 
both processing and communication) architecture with at least 
the following characteristics: 

• Be cognizant of the fact that it is to be deployed across its 
native network inside a wireless network. Such awareness 
at the traditional web services managers would entail 
changes (adaptability) to the communication across IPv6 
and 6Lowpan networks. 

• Take into consideration the fact that extr processing such 
as fragmentation/re-assembly may be carried out at the 
6LoWPAN Gateway. For instance, the ingress query / 
response messages shall be parsed at the gateway and a 
corresponding query / message is generated inside the 
6LoWPAN. Likewise, a response from within the 
6LoWPAN terminates at the gateway and is encapsulated 
inside the respective link layer for the egress network. 

• Be considerate of the compression of SOAP messages 
(including their XML payload) and the processing of the 
compressed data on 6LoWPAN nodes. Although 
approaches for the compression of XML exist in general, 
e.g. [10], none of them has been applied to SOAP 
messages in resource-constraint WSN environments. 

• Considers the optimization of information flow and 
accessibility to allow all authorized applications to share 
this data. 

• Be aware of the fact that novel architectures must be 
needed for application and data composition and 
incorporation of potential value-added decision making 
support. 

• Be capable of providing an information and application 
web which can be accessed and extended, by authorized, 
users and applications, through standard interfaces. 

4. Literature review 

This section provides a brief description of current trends in 
employing SOA and Web Service-based technologies in WSNs 
and 6LoWPAN. Several projects have been developed in order 
to provide an SOA approach for embedded networks, such as 
eSOA[11], SIRENA [12], SOCRADES [13], RUNES [14], and 
OASiS [15]. The majority of these projects aim at making 
embedded devices directly accessible with Web Service 
technologies by installing an adopted Web Service stack, i.e. 
the Devices Profile for Web Services (DPWS) stack [16]. 
However, while this approach is suitable for a certain range of 
devices, there will always be a class of very small and 
lightweight devices, which cannot deal with the additional 
overhead introduced by the Web Service technologies, and 
consequently, require more efficient SOA implementations. 

4.1. DPWS-based approaches 
The Devices Profile for Web Services (DPWS) [16] (see 
Figure 3) was developed to enable secure Web service 
capabilities on resource-constraint devices. It features secure 
exchange of messages, dynamic discovery and description of 
Web services, and subscribing/receiving events to and from a 
Web service. DPWS can also be used for inter-machine 
communication. However, the latter requires the devices to 
have an implemented peer functionality (i.e. a specific DPWS 
client implementation) to use a corresponding service hosted 
on another device. 
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Fig. 3. Devices Profile for Web Services [17] 
 
Some recent works, such as [18–20], have discussed the 
adequacy of DPWS for WSNs. These works recommended 
eliminating the use of SOAP and HTTP protocols due to their 
high overheads. Instead, they provide some solutions based on 
application-specific-formats that are used in the proposed Tiny 
DPWS protocol stack. Although the proposed application 
specific- formats reduces the size of the transmitted messages 
in the network, it hinders the extensibility of the solutions. For 
any new service to be offered by sensor nodes, a new 
application-specific-format should be defined in order to make 
it work in the proposed infrastructure. 

After discussing a set of potential technologies that could 
be deployed to overcome the problems of heterogeneity and 
interoperability in WSN and evaluating their advantages and 
disadvantages, In [17] describes a SOA based middleware 
which mediates data exchange between heterogonous sensor 
platform and Web applications and services in a unified way. 
The idea of this middleware consists of introducing several 
modifications on the original version of DPWS as depicted in 
Figure 4. 
 

 
 
Fig. 4. DPWS-based Architecture [17] 
 
The proposed architecture relies on some optimization 
techniques to reduce the overhead imposed by traditional Web 
Service technologies: 
• Binary encoding techniques are used to overcome the 

problem of huge overhead of XML messages. 
• The less powerful nodes can alternatively offer their 

functionality in the RESTful interface in order to exploit 
the benefits of using web services without suffering from 
their complexities. 

• WS-eventing is used to save the limited network 
bandwidth. Indeed, instead of calling the desired service 
periodically, the user can simply subscribe to the eventing 
interface of this service. WS-eventing notifies the clients 
when the requested service/data has changed according to 
the request definition. 

• The mapping between WSN and Internet applications is 
ensured by the address mapping module. This module 
employs stateless address mapping to facilitate 
communication between these networks. 

• The Mobility Manager enables a node to leave one 
platform type and attach another one without interrupting 
the open service transaction. 

• To accommodate heterogeneous sensor nodes, the 
proposed protocols stack works on top of 6LoWPAN as 
well as other platform specific networking libraries. 

Although this approach appears very interesting and 
promoting, implementations aspects and performance measures 
are not discussed. Moreover, interactions between the different 
components are not studied. In [21], Moritz et al. presented 
different XML specific and XML non-specific compressors 
and their influence on message size of the Devices Profile for 
Web Services (DPWS). Therefore, a test scenario was analyzed 
with 18 different messages. They focused on the SOAP 
compression to makes DPWS applicable for deeply embedded 
devices in 6LoWPAN networks, which are characterized by 
very constrained resources such as small computing power, 
limited power supply, and a few tens of storage capacity. The 
results showed that most existing compressors suffer from the 
simplicity of XML structures, which are the results of non 
complex services deployed on the deeply embedded device. 
Only the Efficient XML Interchange (EXI) and Fast Infoset 
(FI) formats provide a much better compression rate, because 
of the usage of XML schema definitions to include further 
structure information. Usage of compression after re-encoding 
has a minor influence. Details about compression techniques 
and their performance results are available in [21]. To increase 
parsing performance, a new encoding Device Profile for Web 
Services (encDPWS) approach was introduced in [22]. This 
paper investigated the applicability of DPWS in 6LoWPAN 
networks. Their main objective is to optimize the message 
encoding process in order to reduce the overhead of this 
SOAP-based protocol. The encDPWS encoding is based on the 
Tag-Length-Value (TLV) format, which is extensively used in 
lower layers (e.g. IPv6 extension header chaining) and is 
applicable on resource-constrained devices. Required buffers 
are allocated before starting the parsing process, and non-
supported fields are left out without parsing. Carrying length 
information for every data unit inline differentiates encDPWS 
from the other well-known solutions, and significantly 
increases the parsing performance. Based on some 
measurements and comparisons, Moritz et al. showed that it is 
possible to compress SOAP-based We service down to fit the 
size requirements of low power deeply embedded devices. This 
allows DPWS deployments in 6LoWPAN networks, and thus, 
a seamless connectivity of low-power sensors and actuators 
with higher-value services in networked device infrastructure 
or the Internet with one comprehensive cross-domain 
technology. However, these results did not take into account 
resource requirement analysis and performance evaluations and 
comparison with existing schemes. Besides, these 
measurements are done under some specific hypothesis like 
considering only message sizes as performance metric. 
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4.2. Sensor Web Frameworks 
Sensor Web is a revolutionary concept towards achieving a 
collaborative, consistent, and consolidated sensor data 
collection, fusion and distribution system, typically used in 
environment monitoring applications. Sensor Webs can act as 
an extensive monitoring and sensing system that provides 
timely, comprehensive, continuous and multi-mode 
observations. This new earth-observation system opens up a 
new avenue to fast assimilation of data from various sensors 
and to accurate analysis and informed decision makings. 
Sensor Web Frameworks generally aim at making the 
heterogeneous sensor (and actuator) devices along with sensor 
reading repository discoverable and accessible from the 
Internet. In general, they provide a mash-up application that 
allows visualizing sensory data. A key challenge in building 
the Sensor Web is how to automatically access and integrate 
different types of spatiotemporal data that is observed by 
sensor devices or generated using simulation models. The 
Open Geospatial Consortiums (OGC) [23] is an international 
standardization consortium, which provides a framework that 
specifies standard interfaces to access geographical data in 
addition to encoding and exchanging these data over the 
Internet. OGC Web Services follow the W3C’s service-
oriented web services framework and support publishing, 
automatically discovering and accessing geographical 
information over the web; leading to Spatial Data 
Infrastructures (SDI). The Sensor Web Enablement (SWE) [24] 
initiative, initiated by the OGC, extends the prominent OGC 
Web services by providing additional services for integrating 
Web-connected sensors and sensor systems. The SWE 
architecture was designed to enable the creation of web-
accessible sensor assets through common interfaces and 
encodings. SWE currently defines four Web service 
specifications and two models of encodings for observations 
and sensors, respectively. The four Web services are [24]: (1) 
Sensor Observations Service for requesting, filtering, and 
retrieving observations and sensor system information, (2) 
Sensor Planning Service for sensor tasking and feasibility 
studies, (3) Sensor Alert Service for publishing and subscribing 
to alerts from sensors, and (4) Web Notification Service as a 
data transport protocol for the asynchronous delivery of 
messages or alerts. The two data models and encodings, which 
are used as data and metadata exchange protocols, are: (1) 
Observations & Measurements (O&M) used for encoding 
observations and measurements (data) from a sensor device, in 
real-time and archived modes and (2) Sensor Model Language 
(SensorML), used for describing metadata about sensors 
systems and processes associated with sensor observations, 
thus providing information needed for discovery of sensors and 
the location of sensor observations. SWE attempts to 
efficiently address the aforementioned key challenges. In fact, 
it provides an infrastructure that follows the publish-find-bind 
paradigm borrowed from the SOA paradigm. It also allows for 
fusing multiple data models and formats into a common data 
model and representation. However, SWE has the limitation 
that it only provides rudimentary support for the required data 
conversion. On the other hand, the SWE framework presents 
some major gaps when it comes to dynamic data fusion and 
context based information extraction. First, SWE does not 
specify any explicit ontological structure. Although all services 
make use of a common encoding and transport protocol, 
semantic interoperability is still an issue due to the lack of an 
explicit common formal conceptual model encoded in the 
system (there is only one model in the documentation). The 
services and encodings focus on providing standard encoding 
schemes, but they are not grounded in any formal ontology. 
This impacts on dynamically fusing data with different time 

granularity, space and measured phenomena. Apart from the 
lack of semantics, the SWE framework mostly addresses data 
acquisition but neglects filtering and information overload. 
Data is basically pulled from passive services rather than being 
pushed from active services according to the publish subscribe 
paradigm. Another drawback of the SWE framework is the 
lack of support for deploying, discovering and accessing 
Sensor Web applications. Service providers hide complex 
application-logic behind OGC services. Users may be aware of 
individual instances of OGC services, but it will not be clear on 
exactly what applications each service (or combination of 
services) supports. In addition to these standardization efforts, 
there has been several proprietary solutions that illustrated the 
Sensor Web concept. For instance, SensorMap [25], a 
Microsoft project, provides a set of tools that data owners can 
use to easily publish their environmental data, and a GUI 
enabling users to make queries over live data. SensorMap 
transparently provides mechanisms to archive, index and 
aggregate sensory data, and process queries [26]. The 
SenorMap GUI is a mash-up application that permits users to 
submit queries on available sensors and overlays the 
aggregated results on a map. The framework introduced in [27] 
facilitates access to both real time and historical sensed data, 
though of variety of access methods. It addresses the scalability 
issue by introducing a distributed sensor register. 

Although these solutions provide either an SOA-based 
APIs or common interfaces that make sensing data accessible 
for the users, their operational behavior is very much 
influenced by the role of the heavy application-level gateway 
and single point of failure problem. The application-level 
gateway plays a crucial role due to the absence of direct 
interaction between sensor nodes, the Internet applications, and 
users. IrisNet (Internet-scale Resource-Intensive Sensor 
Network Services) [28] and Tenet [29] are two other 
approaches that have adopted SOA in developing middleware 
solutions for WSNs. Tenet [29] simplifies application 
development for tiered sensor networks. It benefits from 
generic motes in the lower tier, and masters, which are 
relatively unconstrained 32- bit platform nodes, in the upper 
tier. Tenet provides a SOA based solution that, in spite of begin 
flexible to accommodate some applications, is still heavily 
relying on the application level gateway that plays an important 
role in the Tenet solution. On the other hand, IrisNet is a 
distributed software architecture, which provides high-level 
sensor services to users. It has two main components: (i.) 
Sensor Agents (SA), which provides, pre-process and reduce 
raw data from a physical sensor, and (ii.) Organizing Agents 
(OA), which provides a sensor service. An Organizing Agent 
typically collects and analyzes data from Sensor Agents to 
answer the particular class of queries related to the underlying 
service. An important characteristic of this architecture is that 
Sensor Agents are dynamically programmable. The 
architecture addresses issues that pertain to designing large-
scale distributed systems, such as distributed processing, 
distributed storage and security. Sensory data is typically 
represented in XML format, and queried are expressed by 
means of the XPATH query language. Furthermore, data 
reduction is a key concept introduced in this system and 
consists in extracting higher-level features from raw data from 
different sensors. Although these solutions expose WSN to be 
more accessible through the Internet by means of application-
level gateways, they mainly suffer from the single-point-of-
failure problem, and scalability issues common to centralized 
gateway approaches. Additionally, no functionality to enable 
direct and seamless interaction between wireless sensors and 
the Internet has been supported, so far. GeoSwift, another 
SOA-based framework that was proposed by Liang et al. in 
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[30], is a distributed geospatial information infrastructure for 
the Sensor Web. This framework consists of a three-layered 
architecture composed of (i.) the Sensor Layer, which 
comprises the actual sensor devices, (ii.) the Communication 
Layer, which represents the physical network or data 
communication links between the various components, and 
(iii.) the Information Layer, that ensures interoperability and 
integration of data among different sensors. The experimental 
prototype uses a Web services’ approach for service 
registration and discovery. The architecture advocates the use 
of OGC standards for integrating and exposing sensory data. 
The authors have proposed an extension to the traditional Web 
services’ approach by relying on a sensing server. The sensing 
server essentially makes part of the Information Layer, and is 
able to integrate and store data in different formats from 
different sensors, and consequently, makes an abstraction of 
the sensor-specific data formats and communication protocols 
to the end-user. New sensors can be integrated into the system 
by extending the sensing server or by deploying a new server. 

All aforementioned approaches aim to provide a 
distributed infrastructure for publishing, discovering and 
accessing sensor resources and to tackle, to some extent, the 
challenge of data fusion. They also aim to restrict data access 
for end users only to the required information. These 
approaches are promising for a single or a group of 
organizations building distributed applications. However, it is 
questionable whether these approaches will be able to scale 
well on the Internet, where thousands of different organizations 
will be developing and deploying different applications 
comprising trillion of sensor nodes and much more users will 
need to tailor and integrate these applications. 

4.3. Some other research efforts 
Several other efforts aimed at using SOA in WSNs. In what 
follows, we present an overview of most relevant works. In 
[31, 32], the authors addressed the feasibility of using RESTful 
Web services to integrate SOA with IP-based WSNs. In [31], 
the authors presented an approach to integrate tiny wireless 
sensor or actuator nodes into an IP-based network. Sensors and 
actuators are represented as resources of the corresponding 
node and are made accessible using a RESTful web service. 
Sensor nodes run a small web server on top of a TCP/IP stack 
to provide access to sensor data and actuators using HTTP 
requests. Data is represented in the JSON format, which is a 
more lightweight alternative as compared to XML. A prototype 
application based on TinyOS 2.1 on a custom sensor node 
platform with 8 Kbytes of RAM and an IEEE 802.15.4 
compliant radio transceiver was implemented. A key feature in 
this approach is that compared to many existing approaches 
that provide Web services at a smart gateway, it proves the 
feasibility to provide Web services at each node, even when 
using a very resource-constrained hardware platform. The 
system explained in [32] uses two mechanisms to provide a 
good performance and low-power operation: a session aware 
power-saving radio protocol and the use of the HTTP 
Conditional GET mechanism. In [33], Rezgui and Eltoweissy 
explored the potential of SOA in building open, efficient, 
interoperable, scalable, and application-aware Wireless Sensor 
and Actuator Networks (WSANs). A prototype of service 
oriented WSAN was developed using TinyOS. I [34], King et 
al. developed a service-oriented WSAN platform, called Atlas, 
which enables self-integrative, programmable pervasive 
spaces. Kushwaha et al. developed in [35] a programming 
framework, called OASiS, which provides abstractions for 
object-centric, ambient-aware, service-oriented sensor network 
applications. OASiS decomposes specified application 

behaviors and generates the appropriate node-level code for 
deployment onto sensor networks. It enables the development 
of WSN applications without having to deal with the 
complexity and unpredictability of low-level system and 
network issues. In [36], Golatowski et al. proposed a service 
oriented software architecture for mobile sensor networks. An 
adaptive middleware is employed in the architecture that 
encompasses mechanisms for cooperative data mining, self 
organization, networking, and energy optimization to build 
higher-level service structures. In [10], the authors presented an 
approach to seamlessly integrate WSNs into business process 
(i.e. SOA) environments using the Busines Process Execution 
Language (BPEL) and Web Services while using only very few 
resources on the sensor nodes. It introduces how application 
developers can use standard-compliant techniques to describe 
business processes that are using services offered by WSNs, 
without the need for hand-crafted code for data conversion, etc. 
By adopting this approach, services offered by the WSN can be 
used seamlessly in enterprise-level business processes. These 
services can also quickly be composed to higher-level 
applications by simply modifying the business process. 
Priyantha et al. described in [37] a Web Servicebased approach 
based on standard technologies such as IPv6, 6LoWPAN, and 
HTTP. Considering the message serialization and transport, 
Web Service messages are exchanged using HTTP. In their 
approach, they tried to avoid using complex SOAP messages as 
much as possible. Instead, if Web Service messages do not 
contain complex data structures, simple URL encoded 
messages are exchanged to reduce the message size. In [38], 
Amundson et al. presented a SOA-based approach for WSNs 
not relying on Web services. Thus, to enable sensor nodes 
calling Web Services of Enterprise-IT systems, their solution 
imposes the use of a gateway, which converts between the 
proprietary middleware message format and standard Web 
Service message format. 

5. Conclusions and research roadmap 
In this paper, we have presented a survey on research 

efforts for the integration between Service-Oriented 
Architecture and LoWPANs. Certainly, these efforts have 
clearly contributed to illustrate the SOA/LoWPAN coupling 
through different and diverse approaches. However, the 
coupling between SOA and LoWPANs (such as WSNs) still 
presents several challenges to be investigated, including but not 
limited to: 
• Adaptation: The adaptation challenge consists in adapting 

the concept of SOA of the traditional Internet to the 
requirements of Cyber-Physical Systems and networks of 
cooperating objects. Indeed, SOA can provide domain 
independent solutions for discovery, selection, 
composition or aggregation of services to provide 
meaningful functionality that highly rely on semantics, 
formal specifications and reasoning. However, SOA 
architectural principle cannot be used directly. It has to be 
adapted to additionally include, not only large complex 
services, but also simple ones, like data storage, routing or 
sensor readings. It must also be compliant with the 
requirements of low power and limited resource devices. 
Identifying and specifying services are crucial for 
exploiting SO in WSANs. A large number of questions 
need to be answered in this respect. For example, how 
many categories of services should be classified in the 
context of WSAN? What are the functionalities, 
interfaces, and properties of each service? What are its 
quality levels relevant to performance requirements? In 
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particular, how to deal with the difference between 
sensors and actuators when specifying services? 

• Quality-of-Service: SOA enables the discovery, access 
and sharing of the services, data, computational and 
communication resources in the network by several and 
different users. It also allows for rapid and cost-effective 
composition of interoperable and scalable systems based 
on reusable services exposed by these systems. This is 
particularly useful for QoS provisioning in Wireless 
Sensor and Actuators Networks that are integrated into 
large-scale Cyber-Physical Systems in which multiple 
applications run on diverse technologies and platforms. 
The provision of QoS that pertains to SOA over WSNs is 
of a paramount importance. Real-time guarantee is one the 
main challenges as it is important to deliver service of 
high priority with a bounded delay and a certain level of 
reliability. The choice of SOA technology would have a 
great impact of the QoS and performance, for that reason 
comparative studies between existing SOA mechanisms 
would be of a great interest and importance to understand 
the advantages and limitations of each technique. 

• Composition and Monitoring: SOA suits particularly well 
for monitoring systems since the development of the 
whole network can directly be mapped to the service, 
simple or complex. For example, the network itself 
provides several composite high-level services such as 
area monitoring or manipulation of actuators. In addition, 
each node offers complex services like data forwarding or 
sensor readings. Each node can also be represented as a 
collection of services that interact with each other. In this 
context, the core challenges lie in devising a 
communication-level and application-level architecture 
for monitoring systems that satisfies both SOA and WSNs 
requirements at the same time. In this respect, several 
questions arise such as for instance: what sort of service 
categories should be classified in the context of 
monitoring systems in general and those compliant with 
6LoWPAN in particular? How to adapt the legacy 
services of the Internet to th requirements of 6LoWPAN 
networks? 

• Semantics: Semantic technologies are often proposed as 
important components of heterogeneous, dynamic 
information systems. The requirements and opportunities 
arising from the rapidly growing capabilities of networked 
sensing devices are a challenging. In this context, One 
promising research objective would be to develop an 
understanding of the ways semantic web technologies, 
including ontologies, agent architectures and semantic 
web services, can contribute to the growth and the 
deployment of large-scale sensor networks and their 
applications. several emerging issues could be 
investigated, including: 
– Standardization: This issue plays an essential role 

with respect to interoperability. The specification of 
standards for communication (MAC, routing, 
topology control, etc.), data representation, service 
description, service discovery, etc. that cope with 
LoWPANs constraints is must for supporting 
largescale deployment and interoperability of these 
technologies. Today, some efforts have addressed 
this issue, such the IEEE 802.15.4, 6LoWPAN, 
OGC, and ROLL, etc. however; there is a need that 
all these standardization committee work closely for 
defining a universal solutions at different levels. 

– SWS management inside lowPANs: SWS deals with 
service publishing, discovery, composition services, 
invoking, and monitoring. All these services must 

have quality of service, fault-tolerance, security, 
dependability etc. then how to fit all of those in such 
constrained environment such as WSNs. 

– Software development process: Currently, we have a 
lack of availability of software development process 
for WSN applications. Yet, it is needed that such 
process must deal with WSN application 
development and integration to the whole third-party 
system. 
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