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Abstract 

In this article, building on our previous work, we engage in spatiotemporal modelling of transport demand in the 

Montreal metropolitan area over the period of six years. We employ classical machine learning and regression models, 

which predict bike-sharing demand in the form of daily cumulative sums of bike trips for each considered docking 

station. Hourly estimates of demand are then determined by considering the statistical distribution of demand across 

individual hours of an average day. In order to capture seasonal and other regular variation of demand, longer-term 

distribution characteristics of bike trips, such as their average number falling on each day of the week, month of the year, 

etc., were also used as input attributes. We initially conjectured that weather would be an important source of irregular 

variation in bike-sharing demand, and subsequently included several available meteorological variables in our models. 

We validated our models by Hold-Out and 10-Fold Cross-Validation, with encouraging results. 
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1. Introduction 

The popularity of bike and scooter sharing is on the increase, 

not least because of their eco-friendly nature. User-friendly 

technology, which enables people to unlock and use these 

vehicles through their smartphones, makes this type of 

transport economical and accessible to masses. It also 

simplifies the collection of data needed to estimate the 

transport needs in a given area and, if the data are 

representative, allows accurate modelling and prediction of 

local transport needs, thus helping to optimise the traffic 

system. 

 

One disadvantage of a shared bike transport system is the need 

to regularly redistribute and rebalance the number of bikes 

among stations. This, in turn, requires a good working 

knowledge of bike-sharing demand, which depends on both 

location and time. Our main motivation was therefore to 

provide this information using statistical methods as well as 

machine learning in order to model and generalize bike-sharing 

demand evolution in time and space. It would enable the 

providers to improve their offer and make this mode of 

transport more readily available. We build on our previous 

work [1] and further enhance it by incorporating selected 

meteorological attributes available for the Montreal 

metropolitan area from the Weather and Climate website of the 

Canadian government [2]. 

 

2. Related Work 

History, impacts, business models and future trends of bike 

sharing were explored in [3], which also mapped its expansion 

in Europe, North America and South-East Asia until about 

2009. A newer article from 2015 [4] focused on the modelling 

of bike-sharing demand and estimated the impact and 

significance of various factors. As expected, the most 

significant factors included the hours of the day, the days of the 

week, and the year. Calendar months (including summer 

holidays) appeared to be only moderately significant.  

Somewhat surprisingly, rainfall levels did not seem to be 

significant and were overshadowed by other weather-related 

factors, such as temperature, atmospheric pressure or humidity. 

Typical models in [4] relied on classification and regression 

trees with boosting and operated on hourly data. The data used 

in [4] covered the area of Washington, DC and the years 2011-

2015. 

 

In [5], the authors opted for an unconventional approach. They 

built a weighted correlation network to capture the relationship 

among bike stations, and dynamically grouped neighbouring 

stations with similar bike usage patterns into clusters. In the 

next step, they used Monte Carlo simulation to predict the 

over-demand probability for each cluster. In their evaluation, 

they used real-world data from New York City and 

Washington, D.C. 
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Lei Lin et al. in [6] employed Graph Convolutional Neural 

Network with Data-driven Graph Filter model capable of 

learning pairwise correlations between stations to predict 

station-level hourly demand in a large-scale bike-sharing 

network. Their model included the convolution and  

feedforward  blocks as well as a recurrent block from the Long 

Short-term Memory neural network architecture  to  capture  

the temporal  dependencies  in  their  bike-sharing  demand  

series.  

 

A successful model of bike-sharing demand would enable the 

providers to solve the optimization problem related to the 

transfer of bikes from the stations with many deposited bikes to 

those where they are needed. This problem was tackled in [7], 

where the problem was defined rigorously through graph 

theory, and a mathematical model was proposed for the optimal 

strategy of distributing unused bikes among the docking 

stations. 

 

In this article, we address the problem of spatiotemporal 

modelling of shared bike trips in Montreal between 2014 and 

2019. Compared to [8], which tackled a similar problem by 

deep learning, we model longer periods and use different types 

of models and attributes. We also employ different accuracy 

metrics, more suited to the specific nature of our task. As a 

result, our models are simpler, more robust and require less 

time for training. Moreover, once they are trained, they have 

very modest hardware demands and can run even on mobile 

devices, which simplifies their eventual deployment.  

3. Description of Data 

In the first phase of our experiments, we considered two bike-

sharing datasets from Canada, both freely available on 

Kaggle.com. One was from Toronto [9], the other from 

Montreal [10]. It turned out that the Montreal dataset was 

considerably more extensive, covering the years 2016-2019. 

Moreover, we were able to enrich it further with the data for 

the years 2014-2015 downloadable from the website of its 

original provider [11]. The final dataset that we used in this 

phase thus comprised more than 26 million records about bike 

trips in Montreal in the years 2014-2019 (size 1.3 GB), which 

helped us to separate long-term trends from seasonal 

variations.  

 

Each record (table row) in this dataset contained the following 

attributes: 

 • start_date: Date and time of the start of the trip (YYYY-MM-

DD hh:mm) 

 • start_station_code: Start station ID 

 • end_date: Date and time of the end of the trip (YYYY-MM-

DD hh:mm) 

 • end_station_code: End station ID 

 • is_member: Type users. (1: Suscriber, 0: Non-suscriber) 

 • duration_sec: Total travel time in seconds 

 

The records for each calendar year covered the months April to 

November (the period during which the service is standardly 

available), except for November 2019, for which no records 

were provided. Besides these records, the dataset also 

contained tables listing active docking stations for each 

calendar year (their number had grown over the years). Each 

docking station was characterised by the following attributes: 

 

 

 • GPS – its geographical position described by its longitude 

and latitude; 

 • station ID – its unique identifier (integer);  

 • station Name – its description (postal address). 

 

Unfortunately, none of these tables listed the number of 

available bikes at these docking stations at any point. In the 

domain of public transport, we can define various tasks and 

apply different approaches. One of them is graph-based, with 

nodes representing docking stations and edges representing 

bike trips. Another possibility is a spatiotemporal model, which 

tries to capture the precise distribution of docking stations and 

bike trips in space and time. The latter approach corresponds 

more closely to our present intention to model and predict 

spatiotemporal aspects of bike-sharing demand. 

 

A successful model would enable the providers of the service 

to optimise the operation of their bike-sharing networks. To put 

it simply, the providers have to transport bikes in a timely and 

regular manner from places where they are not needed to those 

where the current demand is high or is expected to increase 

soon. With the number of docking stations in the order of 

hundreds, such optimization might result in significant 

financial savings. 

 

In this particular dataset there is one problem: lack of 

information about how many bikes were present at each 

docking station at any given time. For the sake of simplicity, 

we assume that the number of bike trips faithfully represents 

the demand for them, that is, we exclude from further 

consideration the possibility that somebody wanted to use a 

bike, but found no bike available in the closest docking station. 

 

A similar task was already attempted in [8], where the authors 

had the data about the number of bikes in each docking station, 

but their approach differed and their bike-sharing dataset 

covered shorter period than ours did. 

4. First Phase: Analysis and Modelling without 

Meteorological Variables 

In our analysis, we concentrated on the docking stations that 

had been in operation throughout the period 2014-19. There 

were 456 such stations. The location of about ten of them had 

slightly shifted over the years (by about 300 meters), but their 

identifiers were kept the same. In such cases, we used the GPS 

coordinates valid for longer period as their location descriptor. 

We also removed a few records with invalid station ID from 

the dataset. 

 

We analysed the data from the period 2014-18 and kept the 

year 2019 apart as an independent testing set for holdout 

validation. Our preliminary analysis revealed some interesting 

patterns: 

 

• For example, the histogram of bike-trips by the day of the 

week in Figure 1 showed a relatively even temporal 

distribution with only minor drops of ridership over the 

weekends and Mondays. 
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Fig. 1. Distribution of relative share of bike trips over the days of 

the week in Montreal  

 

 

• The number of trips in a given calendar month was relatively 

stable across the years (apart from the general growing trend), 

but the data exhibited strong annual seasonality with peaks in 

the summer as shown in Figure 2. (Please note that this bike-

sharing service operates only from April to November). 

 

 
Fig. 2. Distribution of relative share of bike trips over calendar 

months in Montreal  

 

These data distributions enabled us to determine the weights 

for each day of the week and for each month for our 

subsequent analyses. 

 

• Next comes the annual trend shown in Figure 3, which is 

clearly increasing. In this case, in order to make it stand out 

more prominently, we also included our holdout set (2019 data) 

since our whole dataset only covered six calendar years. We 

approximated the missing November 2019 data based on the 

average ratio of November ridership to that of other months in 

the previous years. 

 

We were able to approximate these annual data by the 

following linear function (1). 

   weight (year) =  5,575e5 . year – 1,12e9 (1) 

Of course, this is only a simplified approximation of the 

general trend in the recent past. Even in ideal conditions, the 

growth rate of ridership would eventually taper off, not to 

speak of dramatic reductions in mass mobility imposed by the 

current Covid pandemic. However, for the considered period 

2014-19, a linear approximation is certainly appropriate. 

 

 
Fig. 3. Bike trips in Montreal by the year  
 

Based on the above variables and relationships, we defined a 

group of attributes for our machine learning experiments as 

shown in Table 1. Besides the date and geographical position 

of docking stations from which the trips were initiated, we also 

used the weights of individual years, months and days of the 

week (derived from ridership statistics) as well as the distance 

of the docking stations from the city centre. In this form, one 

record no longer represents one individual bike trip but rather a 

cumulative number of such trips for one calendar day and one 

docking station. We thus condensed more than 26 million 

individual trips into about 600,000 cumulative daily records. 

Table 1. List of attributes used in machine learning experiments  

Attribute Name Attribute Description  

year, month, day date – year, month and day 

dayOfYear number of the day of the year 

gps_lon, gps_lat GPS position of the docking station where the 

trip started 

centre_dist Distance of the docking station from the city 
centre 

weightMonth weight of a given month 

weightYear weight of a given year 

weightDayOfWeek weight of a given day of the week 

DemandCount   (target attribute) number of bike trips starting 

at a given station in a given day 

 

In our experiments, we have defined the city centre as the 

block with the highest density of initiated bike trips, which is at 

the same time situated roughly in the city centre at GPS 

position (45.51; -73.58). We have determined it empirically 

from the bivariate histogram in Figure 4. 

 

Compared to the approach used in [8], which relied on deep 

learning with long short-term memory (LSTM), our techniques 

were more traditional and relied on classical machine learning. 

That is why we first undertook a preliminary analysis of our 

data including their statistical distribution over the days of the 

week, calendar months, years, etc. These distributions appeared 

to be sufficiently stable over the years and at the same time 

significant with respect to the target attribute. That enabled us 

to use them as weights for the days of the week and calendar 

months and to feed them as input attributes to our machine 

learning algorithms. 
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Fig. 4. Bivariate histogram of the number of bike trips grouped by the GPS coordinates of the starting station in Montreal (right) along with 

the corresponding map (left). 

 

 

We modelled our data using various types of models including 

Gaussian Processes, Isotonic Regression, Regression Tree 

M5P, Random Forest, Radial Basis Function Regressor and 

MultiLayer Perceptron Regressor. We evaluated their accuracy 

by two validation methods. The first was holdout validation 

where the holdout set consisted of the data for the (most recent) 

year 2019. These data were not available to our models for 

training. Since the holdout set represented the latest data 

compared to the training set (2014-18), this made our 

modelling task more challenging. In effect, our training set 

consisted of 490,200 records, while the holdout set of 91,200 

records. The second validation method that we used was 10-

fold Cross-Validation, which is considerably more time-

consuming but provides estimates that are more conservative. 

 

We chose Correlation Coefficient and Relative Absolute Error 

as suitable validation criteria capturing our overall modelling 

accuracy. We considered them more suitable than Mean 

Average Percentage Error given that our target attribute 

included many zero values (attempts to calculate MAPE for 

such records would result in a division by zero). In our 

experiments, we achieved the best overall accuracy with M5P 

trees (with pruning and at least 13 samples per leaf) and with 

Random Forests consisting of 20 trees. Tables 2 and 3 list their 

observed accuracy. 

 

Table 2. Modelling accuracy of our best models from the first 

phase as measured by 10-fold Cross-Validation  

 Regression Tree M5P Random Forest 

Correlation Coefficient     0.91144 0.93561 

Relative Absolute Error     0.35130 0.30644 

 
Table 3. Modelling accuracy of our best models from the first 

phase as measured by Hold-Out Validation on 2019 

data 

 Regression Tree M5P Random Forest 

Correlation Coefficient     0.80260 0.80470 

Relative Absolute Error     0.55194 0.55412 

5. Second Phase: New Experiments with 

Meteorological Variables  

In the second phase, we added daily weather information 

recorded on a nearby airport, which we obtained from the 

Weather and Climate website of the Canadian government [2]. 

Weather-related attributes in this dataset included maximum 

daily wind speed, minimum, maximum and average daily 

temperature, and cumulative daily precipitation. All these 

could potentially influence the bike-sharing demand: bad 

weather, i.e. low temperature, strong wind or intense 

precipitation should naturally dampen it. Of course, it would 

have been ideal to use the weather information directly from 

the locations of the concerned bike-sharing stations, but we had 

to make do with what was readily available. 

 

There were quite a few missing values in this dataset. We filled 

them with interpolated data from the two closest days that had 

the corresponding fields filled in or, in the case of terminal 

values that only had one such neighbour, with a copy of the 

neighbour's value. 

 

Apart from the above meteorological attributes, we also added 

another, called WeightStation, which represented a kind of 

"popularity" of each station. It was calculated as the proportion 

of bike-shares for a given station to all bike-shares in the 

period since its establishment until the end of 2018 (we 

excluded 2019 since it was used for Hold-Out validation).  

 

Having incorporated the above attributes into our datasets, we 

repeated the training, testing and validation for the extended 

models using the same methodology as in the first phase. 

Subsequently, we observed an increase in accuracy for both 10-

fold Cross-validation and Hold Out validation, as shown in 

Tables 4 and 5.  

We can see an improvement in both Correlation Coefficient 

(CC) and Relative Absolute Error (REA), which is particularly 

noticeable for Random Forest and Hold Out validation, where 

CC increased from 0.8047 to 0.8411 and REA decreased from 

0.55541 to 0.4868. 
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Fig. 5. Distribution of Relative Absolute Errors for our best Random Forest Model in the Montreal area achieved with Cross-Validation 

(left) and Hold-Out Validation (right). 

 

As shown in Fig. 5, the distribution of Relative Absolute Errors 

for our best Random Forest Model depends on location. In 

general, Relative Absolute Errors tend to be greater for 

locations with higher bike sharing demand.  

 
Table 4. Modelling accuracy of our best models (after adding 

new attributes) as measured by 10-fold Cross-

Validation  

 Regression Tree M5P Random Forest 

Correlation Coefficient 0.93640 0.95042 

Relative Absolute Error 0.30614 0.27091 

 
Table 5. Modelling accuracy of our best models (after adding 

new attributes) as measured by Hold-Out Validation on 

2019 data 

 Regression Tree M5P Random Forest 

Correlation Coefficient 0.82170 0.84110 

Relative Absolute Error 0.51748 0.48678 

 

We also evaluated input attribute importance by the criterion of 

average impurity decrease. The results are shown in Table 6, 

with the most important attributes listed first. 

 

In general, the most important attributes were the various 

weights, in particular the weights of stations, years and 

calendar months. All of them scored impurity decreases of 

more than 6000. The weight of day of the week scored 2868, so 

it did not make it to the top, but still scored above average.  

 

The next important variable was calendar year. Somewhat 

surprisingly, calendar month and the day of the week scored 

significantly lower than calendar year. The reason probably 

stems from the fact that the variation of daily bike-sharing 

demand over days of the week shown in figure 1 is smaller 

than its variation over calendar months and even years, as 

shown in figures 2 and 3. In other words, to reasonably 

estimate the number of bike trips on a given day, it is more 

important to know which month and year it is rather than 

which day of the week it is. 

Table 6. Evaluation of input attribute importance 

by the criterion of average impurity decrease   

Attribute Name Attribute Importance 

WeightStation 23403.54 

WeightYear 7484.34 

WeightMonth 6214.56 

Year 5214.56 

Centre_Dist 3966.40 

Precipitation 3490.98 

WeightDayOfWeek 2867.95 

MaxDayTemp 2054.37 

GPS_Lat 1794.81 

DayOfYear 1246.18 

AvgDayTemp 1166.74 

DayOfWeek 1112.65 

GPS_Lon 1110.08 

Month 1086.72 

MinDayTemp  787.89 

DayOfMonth  712.07 

MaxWindSpeed  567.67 

 

Another interesting observation was that the weights of these 

date-related attributes scored significantly higher than the 

attributes themselves. Here the likely reason is that the weights 

contain additional statistical information about the bike-sharing 

demand, in particular its general trend and regular fluctuations.  

 

Position-related attributes, such as the station's distance to the 

city centre and its GPS coordinates are widely dispersed in the 

list: while the distance to the centre turned out to be very 

important, its GPS coordinates were much less so. 

Nevertheless, they were not negligible, which means that bike-

sharing demand is not symmetrically distributed with respect to 

the city centre – otherwise we should see concentric circles on 

the bivariate histogram in Fig.4. In reality, the demand appears 
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to be much higher to the north of the city centre rather than to 

the south. 

 

Some meteorological variables also came up as important, in 

particular daily total precipitation and maximum daily 

temperature. Surprisingly, other meteorological variables, such 

as average or minimal daily temperature and maximum wind 

speed were much less significant. 

 

Thus, in certain respects, our results mirror those reported in 

[4]: both show high influence of calendar year and air 

temperature. Surprisingly (and somewhat counterintuitively), 

both also concur on the fact that daily total precipitation is not 

one of the most influential factors. Additionally, both show 

calendar month and wind speed as less significant, but not 

negligible.  

 

Some variables used in [4], such as humidity and air pressure, 

were not available to us, so we could not verify their effect on 

bike-sharing demand. For the sake of completeness, let us also 

note that the research in [4] only modelled one specific 

location, so it had no need for GPS coordinates or other 

location-related attributes. 

6. Discussion  

Compared to [8], which modelled bike-sharing demand for 

one-minute intervals, we considered it both more appropriate 

and more practical to model it on an hourly or daily basis, 

which should reveal the macro-level usage patterns more 

clearly. With one-minute intervals, the stochastic component of 

the bike-sharing demand remains too prominent, which makes 

the prediction unnecessarily difficult, as demonstrated by the 

value of Mean Absolute Percentage Error (MAPE) reported in 

[8], which reached 290%. 

 

At the same time, hourly predictions should also suffice for 

logistics purposes: it is unlikely that providers would actually 

shift bikes from places where they are deposited to those where 

they are needed more often than hourly. In our case, we 

decided to derive hourly predictions from the daily ones. In 

other words, our main models predict daily demand, from 

which hourly demand can be estimated, e.g. based on 

histograms of hourly ridership for each day of the week. 

 

In the first phase of our experiments (without including 

meteorological variables in our models), we observed the 

values of Relative-Absolute Error (RAE) in the region of 0.3 to 

0.55 (30% to 55%) and of the Correlation Coefficient in the 

range from 0.80 to 0.93. We used RAE rather than MAPE 

because a non-negligible number of our consolidated daily 

records showed zero daily trips for some docking stations: for 

them, MAPE could not be calculated at all, as it would involve 

a division by zero. 

 

Our attempt at deriving hourly demand from daily totals also 

achieved promising results. Although the correlation 

coefficient of our hourly predictions decreased to 0.72 and their 

relative absolute error increased to 0.93, the value of the Mean 

Absolute Error, which is the average number of bikes by which 

our hourly predictions differed from the reality, was only 

1.179. This level of accuracy might well suffice for bike-

sharing service operators: assuming that they redistribute bikes 

among their stations on an hourly basis, they would just need to 

add one or two more bikes to the predicted hourly numbers to 

virtually guarantee that each station has some free bikes on 

offer throughout the day. 

 

We would like to point out that we derived the hourly 

predictions from the daily ones based on the statistical 

distribution of bike-sharing demand over individual hours of an 

average day. It was therefore a very simple and straightforward 

calculation, based solely on the average hourly statistics. At the 

same time, our daily demand models, which served as input 

into these calculations, did take into account various spatial and 

temporal aspects like geographical location, day of the week, 

month, year, etc. 

 

In the second phase of our experiments, with meteorological 

variables included in our models, we indeed observed an 

increase in accuracy, although it was less pronounced than we 

expected. One reason may be that typical weather for a season 

is already coded in the number and especially the weight of 

each calendar month. In other words, people already know 

what kind of weather to expect, say, in October, so any 

additional information as to whether it is going to rain on a 

given October day or not, will not modify their biking 

behaviour significantly. In addition, the fact that our weather 

variables were not measured directly at the docking stations but 

rather at a nearby airport may also have played a role. 

 

Overall, the main advantage of our models is their simplicity 

and modest computing demands during prediction, which 

means that, after training, they could be employed even on 

mobile devices. Another advantage of our approach is its 

scalability: bike-sharing demand for different stations can be 

calculated independently on different, possibly mobile and 

widely distributed, computing nodes.  

 

As for the limitations of our models, the main one is the 

linearly growing trend of bike-sharing demand over the years, 

which may be appropriate for interpolation over the covered 

period 2014-19 and for short-term prediction, but not for long-

term extrapolation into the future. Even in ideal situations, a 

nonlinear (e.g. polynomial) extrapolation might be needed for 

medium-term future forecasts, not to speak of abrupt and 

dramatic reductions of mass mobility, such as the present one 

due to the Covid pandemic, which no model, however 

complex, can accurately predict in advance. 

7. Conclusion  

In this article, we have dealt with spatiotemporal modelling of 

shared bike trips in Montreal in the six-year period from 2014 

until 2019. Compared to [8], which addressed a similar topic 

by deep learning, we adopted a different approach consisting of 

different accuracy metrics and different types of attributes and 

models. We also modelled longer periods. These choices 

influenced the speed of model training as well as model 

accuracy. In the first phase of our experiments, without 

incorporating meteorological variables, our trained models 

reached Relative Absolute Error of about 0.3 (for 10-Fold 

Cross-Validation) and 0.55 (for Hold-Out Validation). After 

recalculation to hourly values, they reached Mean Absolute 

Error 1.179, and Correlation Coefficient 0.72, which we 

considered sufficient for practical application. 

 

When we incorporated available meteorological variables 

(temperature, precipitation, wind speed) and weighted 

individual stations by the relative share of bike trips starting in 

them, the accuracy of our models increased, although the 
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increase was less marked than we expected.  The highest 

increase was for Random Forest model and Hold out 

validation, where the correlation of the predicted with the 

actual bike-sharing demand grew from 0.80 to 0.8411 and the 

relative absolute error decreased from 0.5541 to 0.4868. 

 

We also evaluated the importance of our attributes with respect 

to bike-sharing demand and confirmed several observations 

noted in [4], although our situation and approach slightly 

differed. 

 

In the future we plan to incorporate more meteorological 

variables in our models, hopefully also from locations closer to 

the bike-sharing stations. We expect this will help us to 

increase the accuracy of our models even further. Potential 

sources for these data include NOAA [12] and ECMWF [13]. 

Acknowledgments 
 

This research was supported by the projects VEGA 2/0125/20, 

and SVASAS OPVaI-MH/DP/2018/2.2.2-20. 

References 

 

[1] Krammer, Peter; Kvassay, Marcel; Hluchý, Ladislav. 

Spatiotemporal modelling of transport demand. 

In Procedia Computer Science, 2020, vol. 175, p. 349-356. 
https://doi.org/10.1016/j.procs.2020.07.050  

[2] Historical Climate Data, available in March 2021 at: 

https://climate.weather.gc.ca/ 

[3] Paul DeMaio: Bike-sharing: History, Impacts, Models of 

Provision, and Future, Journal of Public Transportation, 

Vol. 12, No. 4, 2009, pp. 41 – 56, 

https://scholarcommons.usf.edu/jpt/vol12/iss4/3/        

https://doi.org/10.5038/2375-0901.12.4.3  

[4] Oriol Cosp Arqué: Demand forecast model for a bicycle 

sharing service, 2015, https://upcommons.upc.edu/ 

bitstream/handle/2117/78121/Tesina.pdf?sequence=1&isA

llowed=y 

[5] Chen, L., Zhang, D., Wang, L., Yang, D., Ma, X., Li, S., 

Wu, Z., Pan, G., Nguyen, T.M.T., Jakubowicz, J., 2016.  

Dynamic cluster-based over-demand prediction in bike 

sharing systems, Proceedings of the 2016 ACM 

International Joint Conference on Pervasive and 

Ubiquitous Computing, ACM, New York, NY, USA. pp. 

841–852,https://dl.acm.org/doi/10.1145/2971648.2971652 

        https://doi.org/10.1145/2971648.2971652  

[6] Lin, L., He, Z., Peeta, S., 2018. Predicting station-level 

hourly demand in a large-scale bike-sharing network: A 

graph convolutional neural network approach. 

Transportation Research Part C: Emerging Technologies 

97, 258–276. https://doi.org/10.1016/j.trc.2018.10.011  

[7] Chemla, Daniel; Meunier, Frédéric; Calvo, Roberto 

Wolfler: Bike sharing systems: Solving the static 

rebalancing problem. Discrete Optimization, 2013, 10.2: 

120-146, https://www.sciencedirect.com/science/article/ 

pii/S1572528612000771 

https://doi.org/10.1016/j.disopt.2012.11.005  

[8] Liu, Xu, et al. "Multi features and multi-time steps LSTM 

based methodology for bike sharing availability 

prediction." Procedia Computer Science 155 (2019): 394 - 

401, on Future Networks and Communications in 2019. 
https://doi.org/10.1016/j.procs.2019.08.055  

[9]  Toronto Bikeshare Data, Bike Share Toronto Ridership, 

avail. March 2021, https://www.kaggle.com/ 

jackywang529/toronto-bikeshare-data 

[10] Bixi Montreal Bikeshare Data, Bikeshare information for 

Bixi Montreal, https://www.kaggle.com/jackywang529/ 

bixi-montreal-bikeshare-data  

[11] Montreal managed bike-sharing system, avail. March 

2021, https://bixi.com/en/page-27 

[12] National Oceanic and Atmospheric Administration, avail. 

March 2021, https://www.noaa.gov/ 

[13] European Centre for Medium-Range Weather Forecasts, 

avail. March 2021, https://www.ecmwf.int/en/about 

 

 

 

https://doi.org/10.1016/j.procs.2020.07.050
https://climate.weather.gc.ca/
https://scholarcommons.usf.edu/jpt/vol12/iss4/3/
https://doi.org/10.5038/2375-0901.12.4.3
https://upcommons.upc.edu/%20bitstream/handle/2117/78121/Tesina.pdf?sequence=1&isAllowed=y
https://upcommons.upc.edu/%20bitstream/handle/2117/78121/Tesina.pdf?sequence=1&isAllowed=y
https://upcommons.upc.edu/%20bitstream/handle/2117/78121/Tesina.pdf?sequence=1&isAllowed=y
https://dl.acm.org/doi/10.1145/2971648.2971652
https://doi.org/10.1145/2971648.2971652
https://doi.org/10.1016/j.trc.2018.10.011
https://www.sciencedirect.com/science/article/%20pii/S1572528612000771
https://www.sciencedirect.com/science/article/%20pii/S1572528612000771
https://doi.org/10.1016/j.disopt.2012.11.005
https://doi.org/10.1016/j.procs.2019.08.055
https://www.kaggle.com/%20jackywang529/toronto-bikeshare-data
https://www.kaggle.com/%20jackywang529/toronto-bikeshare-data
https://www.kaggle.com/jackywang529/%20bixi-montreal-bikeshare-data
https://www.kaggle.com/jackywang529/%20bixi-montreal-bikeshare-data
https://bixi.com/en/page-27
https://www.noaa.gov/
https://www.ecmwf.int/en/about

