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Abstract 

Reinforcement learning has shown potential for developing effective adaptive traffic signal controllers to reduce traffic 

congestion and improve mobility. Despite many successful research studies, few of these ideas have been implemented in 

practice. There remains uncertainty about what the requirements are in terms of data and sensors to actualize reinforcement 

learning traffic signal control. We seek to understand the data requirements and the performance differences in different 

state representations for reinforcement learning traffic signal control. We model three state representations, from low to 

high-resolution, and compare their performance using the asynchronous advantage actor-critic and distributional Q-

learning algorithms with neural network function approximation in simulation. Results show that low-resolution state 

representations (e.g., occupancy and average speed) perform almost identically to high-resolution state representations 

(e.g., individual vehicle position and speed) using fully connected neural networks, but deep neural networks with high-

resolution state representation achieve the best performance. These results indicate implementing reinforcement learning 

traffic signal controllers in practice can be accomplished with a variety of sensors (e.g., loop detectors, cameras, radar).  

 

Keywords: adaptive traffic signal control, deep reinforcement learning, intelligent transportation systems, applied 

machine learning, transportation simulation, neural networks 
 

  

1. Introduction 

Vehicle congestion is a major problem in cities across the world 

[1]. Developing additional infrastructure is expensive and a 

protracted process which can exacerbate the problem until 

completed. Instead of adding more infrastructure, another 

solution is to optimize currently available infrastructure. 

Intersection traffic signal controllers (TSC) are ubiquitous in 

modern road infrastructure and their functionality greatly 

impacts all users. Many research studies have proposed 

improvements to TSC, broadly in an attempt to make them 

adaptive to current traffic conditions. Reinforcement learning 

has been shown to be effective in developing adaptive TSC as 

an intelligent transportation system with many research studies 

detailing promising results. Despite the encouraging research, 

few reinforcement learning adaptive TSC have been deployed in 

the field. One inhibiting factor is the resources required; to 

observe the traffic state, reinforcement learning TSC often 

require high-resolution data beyond the detection capability of 

traditional sensors (i.e., loop detectors). This research focuses on 

the potential state definitions of reinforcement learning TSC and 

ascertaining the performance differences between them. We 

seek to answer, can a reinforcement learning TSC function using 

low-resolution data from traditional sensors such loop detectors? 

Or is high-resolution data from sophisticated sensors (e.g., 

cameras, radar) required? Answering this question will help 

individuals interested in deploying reinforcement learning TSC 

in the field, as they will be aware of the requirements and 

potential outcomes. We use the traffic microsimulator SUMO 

[2] and the asynchronous advantage actor-critic (A3C) [3] and 

Categorical 51 atom (C51) [4] distributional Q-learning [5] 

algorithms to train and evaluate multiple adaptive TSC with 

different resolution state representations. 

 

2. Related Work 

Many research studies have recognized and displayed 

reinforcement learning’s capability for providing a solution to 

TSC. Early research provided proof-of-concept for 

reinforcement learning in TSC [6–9]. Later research applied 

reinforcement learning methods to more realistic and complex 

traffic models [10–15]. Developments in machine learning have 

yielded deep reinforcement learning techniques [3, 16, 17] 

which have subsequently been applied for TSC [18–24]. 

Considering the aforementioned research and the extensive 

reinforcement learning TSC reviews [25–27], we identify 
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numerous possible state representations: vehicle density, flow, 

queue, location, speed along with the current traffic phase, cycle 

length and red time. These state representations form a 

resolution spectrum of the current traffic state, from coarse (e.g., 

flow) to fine (e.g., individual vehicle position and speed). We 

consider state representation across the resolution spectrum, 

requiring different sensors, and compare their performance. 

Results from this research can guide individuals interested in 

practical implementation. 

3. Model 

3.1. Reinforcement Learning 

 

Reinforcement learning is a type of machine learning for solving 

sequential decision-making problems [28]. A reinforcement 

learning agent learns a policy π(s) = a, mapping from states s to 

actions a, to achieve a goal, quantified as a reward r, in an 

environment under uncertainty. Through repeated environment 

interactions, a reinforcement learning agent strives to develop an 

optimal policy π*, which maximizes the sum of future 

discounted (γ ∈ (0, 1]) rewards, defined as the return Gt in Eq.1: 

 

Gt = ∑ γkrt+k

∞

k=0

 

(1) 

 

The agent interacts with the environment in repeating sequences 

of, at time t, observing the environment state st, taking action at, 

receiving reward rt and transitioning the environment to a new 

state st+1. Over time, the agent learns what actions in what states 

maximize long-term reward, also known as value. Rewards 

quantitatively represent how successful the agent’s policy is 

achieving its mandated goal. Reinforcement learning utilizes 

various types of value functions to develop the optimal policy. 

Many algorithms have been proposed to efficiently develop 

value functions using sampling-based techniques. The A3C 

algorithm is used to develop parameterized θ policy π(a|s;θ) 

(Eq.2) and state-value Vπ(s;θ) functions (Eq.3). The agent 

develops a state-value function (critic), which estimates the 

expected return from a given state st, which is used to improve 

the policy (actor). The A3C algorithm is an on-policy 

reinforcement learning algorithm, developing the optimal policy 

directly. 

 

π(a|s; θ) = Pr[ at = a|st = s; θ] 
 

(2) 

Vπ(s; θ) = E[Gt|st = s; θ] (3) 

 

The C51 algorithm [4] is an extension of the deep Q-network 

(DQN) algorithm [16], which develops a parametrized (state) 

action-value function Qπ(s,a; θ) (Eq.4). 

 

Qπ(s, a; θ) = E[Gt|st = s, at = a; θ] (4) 

 

An action-value function estimates the expected return of taking 

action at from state st. DQN estimates an action-value’s mean; 

C51 extends beyond the mean by modeling the distribution of 

the return incorporating the return’s variance, depicted in Fig. 1. 

Like DQN, C51 is an off-policy, value-based reinforcement 

learning method, different from the A3C algorithm, which does 

not directly develop the optimal policy. Instead, the C51 

algorithm can be used to develop the optimal policy by acting 

greedily with respect to the current state’s action-value (i.e., 

choosing the action with the high value given the current state). 

Compared to policy-based reinforcement learning algorithms 

like A3C, C51 is more sample-efficient due to its use of an 

experience replay [30]. However, policy-based algorithms like 

A3C often have stronger convergence properties due to their 

direct development of the policy.  

Both algorithms make use parametric function approximation in 

the form of neural networks. The parameters define the weights 

between neurons in the network, estimated through sampling, 

gradient based techniques [31–33]. 

 

3.2. Environment 

 

The environment used to train the reinforcement learning 

adaptive TSC is the traffic microsimulator SUMO [2]. The 

network geometry is an isolated intersection with four origin-

destination zones in each compass direction; North (N), South 

(S), East (E) and West (W). Each origin-destination zone is 

connected to the intersection with eight lanes, four incoming and 

four outgoing. The turning movements for incoming lanes to the 

intersection are; the right lane allows right turn and through 

movements, the middle two lanes allow through movements and 

the left lane allows left turns.  

We simulate a peak or rush hour traffic demand scenario for 

training. The traffic is generated stochastically using a negative 

exponential distribution with a rate parameter λ. To add further 

stochasticity, the rate parameter λ is sampled from a normal 

distribution N (λ, λ/10), displayed in Fig. 2. 

3.3. State 

 

At time t the reinforcement learning agent observes the state of 

the environment st. The agent’s behaviour and ability to learn is 

greatly influenced by the state and its definition. Three state 

spaces are defined for reinforcement learning TSC with different 

resolutions of the environment. All state representations include 

the most recent traffic phase encoded as a one-hot vector (i.e. a 

phase from the set of all traffic phases P) and the time spent in 

that phase. One-hot vectors are used to represent categorical 

variables. For K categories, a K × K identity matrix represents 

all the categories, with each row representing a different 

category. 

3.3.1. Occupancy and Speed 

 

The lowest resolution state space is defined using occupancy and 

average speed. Loop detectors are the most common sensors at 

intersections and can be used to collect coarse traffic statistics, 

such as occupancy and average speed for each lane. We model 

each incoming lane with two loop detectors, one at the stop line 

and the other setback 50 m from the stop line. The occupancy 

and average speed (normalized by the speed limit) are computed 

from the previous 10 s interval. Given m incoming lanes, the 

A3C-Loop state is st ∈ ℝ(2m+|P |+1). 

3.3.2. Queue and Density 

 

A higher resolution state space is defined using vehicle density 

and queue. Loop detectors are inadequate to collect queue and 

density data reliably, more sophisticated sensors are required 

(i.e., video cameras, radar). Assuming a jam density kj, Vl 

represents the set of vehicles on lane l and Vl,q the set of queued 

vehicles on lane l, we define vehicle lane density Vl/kj and 

vehicle lane queue Vl,,q/kj. Given m incoming lanes, we denote 

the A3C-Queue state st ∈ ℝ (2m+|P |+1). 
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3.3.3. Discrete Cell Encoding 

 

The highest resolution state space discretizes each incoming lane 

into cells of a fixed length c = 2.5 m, termed the Discrete Traffic 

State Encoding (DTSE). Cells are binary encoded, 1 represents 

the presence of a vehicle and 0 represents the absence of a 

vehicle. Sophisticated sensors (i.e., video cameras, radar) would 

also be required to collect this state data. Given an incoming lane 

length L = 135 m, the A3C-DTSE state is st ∈ ℝ((L/c) m+|P |+1)t , 

where we use a history of the t = 2 most recent states. This state 

definition was first proposed using SARSA reinforcement 

learning [6] and has since been utilized in deep reinforcement 

learning TSC [18, 19, 21].  

The C51 variant utilizes the highest-resolution state space, 

DTSE, to create a C51-DTSE TSC. The only difference between 

the A3C-DTSE and C51-DTSE states is that C51 stacks the t = 

4 most recent states into each observation, similar to DQN [16]. 

3.4. Actions 

 

After observing state st, the agent chooses an action at ∈ A. The 

actions available are the green traffic phases, denoted in this 

research by a pair of compass directions and set of movement 

priorities (i.e., G represents protected through movements and 

permissive left turn movements and LG represents protected left 

turn movements and prohibited through movements). For 

example, the action NSG represents North-South protected 

through movements, permissive left turn movements and 

prohibits all East-West movements. Actions in a sequence may 

require yellow change and red clearance phases, with additional 

action/phase information detailed in Table 1. The set of all 

possible actions is denoted A = {NSG, EWG, NSLG, EWLG}. 

All actions at ∈ A have a duration of 10 s and yellow and red 

phases have a duration of 4 s. When no vehicles are present at 

the intersection (i.e., ∀l, Vl = {})), all movements are prohibited 

with the red clearance phase.  

The agent’s traffic signal control policy is acyclic, unconstrained 

and ad-hoc. We argue imposing a cycle in reinforcement 

learning TSC is presumptuous. If a cycle is optimal, the agent 

will develop such a policy. There are no maximum times for 

each phase and the agent chooses the next action/phase without 

limitation. 

3.5. Rewards 

 

After observing state st and taking action at, the agent receives a 

scalar reward rt ∈ ℝ from the environment. The reward is 

feedback for how ‘good’ action at was in st. Many rewards have 

been proposed for reinforcement learning TSC (e.g., functions 

of throughput, queue, delay). The A3C’s reward is defined in 

Eq.5 as change in cumulative delay: 

 

rt = Dat
− Dat+1

 (5) 

 

Where 𝐷𝑎𝑡
, 𝐷𝑎𝑡+1

 represent the cumulative delay at the 

intersection when action at and at+1 are taken. Cumulative 

vehicle delay D at time t is defined in Eq.6: 

 

Dt = ∑ dt
v

vϵVt

 

(6) 

 

Where Vt is the set of vehicles on incoming lanes in the 

simulation at time t and 𝑑𝑡
𝑣 is the delay of vehicle v at time t.  

Preliminary work found the C51-DTSE performed poorly with 

the aforementioned change in delay reward. Further 

investigation found negative cumulative delay a suitable reward, 

defined in Eq.7: 

 

rt = −Dt (7) 

 

3.6. Agent 

 

The agent is the entity, through repeated interaction with the 

environment, that implements and improves the policy π. In this 

research, the agent chooses the next green traffic phase. We 

model the agent as an artificial neural network. 

An artificial neural network is chosen for its flexible function 

approximation capabilities. The A3C agent’s neural network 

architecture is an input layer and then a fully connected hidden 

layer with rectified linear (ReLu) activation functions followed 

by another fully connected hidden layer with ReLu activation 

functions. The output layer has |A| = 4 neurons with softmax 

activation functions which output the action probabilities 

representing the policy (i.e., next traffic phase). The number of 

neurons in each hidden layer for each state representation is 

equal to the cardinality of the input state; A3C-Loop and A3C-

Queue hidden layers have 42 neurons and A3C-DTSE hidden 

layers have 1780 neurons. 

The A3C algorithm simulates multiple actor-critic agents in 

parallel, each with their own environment. Using a local 

parameter set θ', each agent computes an advantage Adv = Gt − 

V (s;θ') from multistep returns of length tmax = 32. The advantage 

is a measure of the difference between the actual and expected 

performance of the policy. The advantage is used to compute 

parameter gradients dθ which are asynchronously applied to a 

global parameter set θ for updating the state-value (Eq.8) and 

policy functions (Eq.9). Each agent periodically copies the 

global parameters θ as their local parameters θ'. The rewards are 

standardized before computing the return (i.e., rt←(rt−µr )/σr ) 

and the gradient of the policy entropy 𝜖𝑡 = 𝛽  𝛻
𝜃′𝐻(𝜋(𝑠; 𝜃′)) is 

added to the parameter update for improved learning. 

 

dθ← dθ +
∂(Adv)2

∂θ′  (8) 

  

dθ← dθ +  ∇
θ′ log

e
π(a|s; θ′) (Adv) + ϵt (9) 

 

The C51-DTSE uses a deep convolutional neural network 

architecture. The first layer receives the DTSE as input, with the 

following sequence of hidden convolutional and fully connected 

layers: 16 filters of size 4x4, 16 filters of size 3x3, 32 filters of 

size 2x2, a fully connected layer of 256 neurons and |A| = 4 

separate output heads of 51 fully connected neurons, 

representing each of the 4 action’s return distributions. All 

hidden layers use ReLu activation functions except the final 

output heads, which uses softmax activation functions. The C51 

algorithm updates using a categorical cross-entropy loss where 

the targets are discrete distributional returns. Readers interested 

in C51 algorithm details should consult the algorithm designer’s 

original publication [4]. A decentralized acting, centralized 

learning architecture is used to train the C51-DTSE. Parallel 

actors explore distinct environments and send experiences (i.e., 

tuples of (st, at, rt, st+1)) to a centralized learner experience replay 

[34], each actor implementing a different 𝜀-greedy exploration 

policy. The learner uniformly samples experience batches from 

the replay and computes parameter updates using online and 

target parameter sets. One important difference between the 

A3C and C51 implementations in this research is that A3C uses 

32-step returns while C51 uses only 1-step returns. 
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4. Experiments 

We subject each different state representation reinforcement 

learning TSC to N = 100 rush hour demand scenarios, T = 7 200 

simulation steps in duration, for training. As a form of data 

augmentation and to prevent overfitting, the rush hour demand 

scenario is randomly shifted in time for each simulation, 

displayed in Fig. 2. Training is conducted using a consumer i7 

CPU with 8 parallel, asynchronous threads. Training for each 

state representation was 3-6 hours wall clock time.  
For comparison after training, each different state reinforcement 

learning TSC is subjected to 100 rush hour demand scenarios 

without data augmentation (i.e., random seeds) to ensure parity 

during testing. Throughput, delay and queue statistics are 

collected during testing simulations. During testing simulations, 

all network parameters are frozen; the A3C follows its learned 

policy and the C51 acts with a fixed exploration rate of 0.05.  

The traffic microsimulator SUMO [2] is used for all simulations. 

Tensorflow [35], Keras [36], SciPy [37] and additional Python 

libraries [38, 39] are used for implementing the neural networks 

and reinforcement learning.  

As a baseline for comparison, we model an Actuated TSC which 

uses loop detectors to modulate the green phase lengths. The 

Actuated TSC is cyclic; each phase has a minimum green time 

of 10 s, after which a gap-out timer begins decrementing from 5 

s. If a vehicle is detected in a lane with a protected movement 

under the current phase the gap-out timer is reset to 5 s, up to a 

maximum of 40 s.  

All TSC models use the Adam optimizer [40] for training with a 

learning rate of 7.5 × 10−4 and an epsilon of 1 × 106. A batch size 

of 16 is used and both networks update after 100 experiences 

(i.e., online parameters are copied to target parameters for C51 

and gradients are applied to global parameters for A3C).  

Hyperparameters unique to C51 used in this research include 

distributional return maximum Vmax = 0.0 and minimum Vmin = 

−10.0 values. The experience replay has a maximum capacity of 

1 × 104 and is filled to capacity before updates begin. A visual 

representation of C51-DTSE TSC’s distributional returns after 

training can be seen in Fig. 1. 

5. Analysis & Discussion 

Testing results are displayed in Table 2 and visually in Fig. 3. 

All reinforcement learning TSC achieve superior performance 

in reducing delay and queue lengths compared to the Actuated 

TSC. This result is not surprising, as the reinforcement learning 

TSC have greater flexibility in action selection compared to the 

Actuated TSC, which must implement phases in a cycle. 

Observing the traffic metrics collected, there appears to be little 

to no difference between the different state representations when 

using the A3C algorithm, however, the C51-DTSE TSC 

achieves the best performance overall. There is no difference in 

throughput or queue between A3C variants, however, the A3C-

Loop exhibits the highest delay compared to the A3C-Queue and 

A3C-DTSE. This result is surprising to the authors, specifically 

how little difference there is between the different A3C state 

representations considering the spectrum of data resolution 

modeled. 

The fact that the C51-DTSE outperformed all A3C variants is 

likely due to a combination of factors; the distributional return 

model and the difference in neural network architecture (i.e., 

deep convolutional versus shallow fully-connected). Although 

in theory A3C is described as on-policy, updating using 

asynchronous policy gradients, in practice policy lag can occur, 

making it slightly off-policy, diminishing the quality of the 

gradient updates and reducing learning performance. The A3C’s 

behaviour is contrasted with C51’s off-policy experience replay 

buffer, which is more robust while learning because the gradient 

updates are computed at the centralized learner. While the C51 

algorithm with high-resolution state data achieves the best 

performance, the performance disparity is not as significant as 

has been observed in other reinforcement learning tasks, such as 

Atari video games [4, 41]. Low-resolution state data, as can be 

generated from loop detectors, still achieves considerable 

performance gains compared to traditional, Actuated TSC. 

These findings suggest common traffic sensors such as loop 

detectors would be sufficient to provide data for any parties 

interested in implementing reinforcement learning TSC in 

practice. However, parties interested in achieving the maximum 

performance should consider deep neural networks with high-

resolution state data and a distributional return model.  

6. Conclusion 

We modeled adaptive TSC using the A3C and C51 

reinforcement learning algorithms with various state 

representations to determine any differences in performance. 

Results show that data collected from traditional and ubiquitous 

sensors such as loop detectors are sufficient for reinforcement 

learning adaptive TSC. Under the model devised in this research, 

high-resolution state representations requiring sophisticated 

sensors offer improvements only by reducing delays and queues 

by approximately 10 − 20%, with no difference in throughput 

compared to low-resolution state representations. 

Considering the successful combination of experience replay 

and distributional returns, many future areas of research exists. 

Off-policy, policy-based reinforcement learning methods have 

been successfully developed which combine the data efficiency 

of experience replay with direct policy development [42–44]. 

Additionally, improved algorithms have been developed for 

modeling distributional returns, displaying improved 

performance beyond C51 [41]. Any of these techniques could be 

used to further improve reinforcement learning TSC and are 

worth future investigation. 
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Fig. 1. C51-DTSE action-value distribution for the current state s in the SUMO traffic model. The solid vertical line in each subplot represents 

the expected value of the action-value’s distribution. With reward defined as negative cumulative delay, the action value closest to 0.0 

is optimal. Observing the simulator state s, the majority of vehicles are traversing North and South links. The action-value distributions 

reflect this fact, as the NSG action exhibits the highest action-value, indicating it is the optimal action. 

 

 

 

 
Fig. 2. Rush hour demand traffic scenario used for training (randomly shifted temporally) (right) and testing (fixed temporally) (left). 
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Fig. 3. Testing results comparing different agent and state definitions in a 2 hour simulation testing simulations. Each method’s performance 

is estimated from 100 randomly generated (i.e., randomly seeded) testing simulations. Solid coloured lines represent mean values and 

shaded areas represent 95% confidence intervals. 

 

 

 

 

 

Table 1. Traffic Signal Phase Information  

   Turning Movements 

Action NEMA Phases Compass Directions Left Through Right 

NSG 2, 6 North, South Permissive Protected Permissive 

NSLG 1, 5 North, South Protected Prohibited Permissive 

EWG 4, 8 East, West Permissive Protected Permissive 

EWLG 3, 7 East, West Protected Prohibited Permissive 

 

 

 

              Table 2.    Traffic Signal Controllers Estimated Performance 

 (n=100, 𝝁̂, 𝝈̂) 

Traffic Signal Control Method Total Throughput (veh/sim) Total Delay (s/sim) Total Queue(veh/sim)  

A3C-Loop (6 609, 86) (2.8 × 106, 4.6 × 105) (1.2 × 105, 0.8 × 104)  

A3C-Queue (6 612, 87) (2.3 × 106, 2.5 × 105) (1.2 × 105, 0.7 × 104)  

A3C-DTSE (6 598, 92) (2.4 × 106, 4.9 × 106) (1.1 × 105, 0.9 × 104)  

Actuated (6 529, 98) (7.7 × 106, 7.3 × 105) (2.2 × 105, 1.2 × 104)  

C51-DTSE (6 610, 99) (2.0 × 106, 2.8 × 105) (9.6 × 104, 1.0 × 104)  

 

 

  

 


