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Abstract 

The consumption of energy is increasing drastically. The available resources of energy are limited therefore; the search 

of new sources is a vital issue. This has to be done with efficient energy consumption and saving. A flywheel may 

provide a mechanical storage of kinetic energy. A capable flywheel must have a very high rotational speed which may 

lead to a high stresses. The stress state relies on the flywheel material properties, geometry and rotational speed. On the 

other hand, the stored kinetic energy relies on the mass moment of inertia and rotational speed. This paper considered 

three solid flywheel disk profiles that are constructed using functions of cubic splines. Using FEM, the cubic splines 

parameters are analyzed systematically to seek a maximum stored kinetic energy per unite mass. Subjected to maximum 

permissible effective stress, favorable flywheel disk profiles were achieved.  All FEM computations were carried out 

using ANSYS.   
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1. Introduction 

Flywheels are used to achieve smooth operation of machines. 

Their mechanical model of consists of a solid wheel attached to 

an axle. On the other hand, flywheels are constructed to store 

mechanical energy that may be transferred to and from an 

integrated motor/generator. Thus flywheels can be used as 

supplementary energy storage for a wide range of applications 

including electric vehicles, intermediate storage for renewable 

energy generation. One of the key issues for viable flywheel 

construction is its robustness and overall efficiency. 

Robustness of a flywheel is related to the induced stress due to 

high centrifugal forces generated by rotational speed. A 

flywheel efficiency includes the amount of specific kinetic 

energy (energy per unit mass) and mechanical losses. To 

achieve a reliable performance of a flywheel the maximum 

specific kinetic energy should be accomplished subjected to the 

maximum allowable induced stresses. The stresses of flywheels 

may be determined by analytical and/or numerical methods. 

Gerard C. Pardoen et al [1] analyzed the variation of the mass 

and stiffness properties of thick rim flywheel in a search for 

desirable stress states. To optimize the flywheel geometry, 

Nadar D. Ebrahimi [2] devised a continuous function for 

thickness variation of the flywheel calculated its volume and 

mass moment of inertia and presented the stress analysis 

problem as a two-point, boundary-value differential equation. 

The objective function was the ratio of inertia over volume. 

Kress [3] considered finding the best thickness distribution 

along the radius of a centrally bored flywheel under the 

objective of reaching an even stress distribution. A two-

dimensional Finite-Element-Method (FEM) model was 

employed for shape optimization. Eraslan [4] used Tresca’s 

yield criterion to investigate the elastic–plastic deformation of 

a rotating solid disk of exponentially varying thickness. Based 

on Tresca’s yield criterion, Eraslan [5] obtained analytical 

solutions for the elastic–plastic stress distribution in rotating 

variable thickness annular disks subjected to plane stress 

assumption. The thickness of the disk is assumed to vary in 

parabolic form in radial direction. Arslan [6] studied flywheel 

profiles characterized by straight/concave or convex shaped 2D 

cross-sections and ranked them according to their energy 

storage performance. FEM was used by employing ANSYS. 

Using FEM through ANSYS package, this paper discussed the 

details of optimization of 2D flywheel profiles characterized by 

set of cubic splines functions.  

2. Problem Model 

2.1. Flywheel Geometry   

 

Flywheel geometry consists of solid disk as shown in Fig.  1. 

The flywheel is a solid disk with a constant angular velocity,  

rotating around z direction. The problem domain is represented 

by r,  and z coordinates.  As the disk thickness and therefore 
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the developed centrifugal forces distribution are not affected by 

, the problem becomes axisymmetric. Therefore the solution 

domain can be reduced to r and z coordinates. Thus the model 

is simplified as 2D. The disk is symmetric across z direction 

and the problem can be further simplified by considering 

positive z direction only as illustrated by Figure 2.  

z

r





 
Fig. 1. Typical flywheel disk geometry 

 

 

z

r
 

Fig. 2. Typical 2D flywheel disk profile 

 

ANSYS is employed to determine the stress state, mass 

moment of inertia and stored kinetic energy of a flywheel. 

Accurate representation of solution domain should be fulfilled 

as different geometry profiles of flywheel will be utilized for 

optimization process. To meet this, the option of smart finite 

element mesh is activated by ANSYS. A finer FEM mesh is 

used for a thinner disk.  Axisymmetric elements of 8 nodes are 

utilized throughout this study. Figure 3 illustrates a typical 

FEM mesh with symmetric boundary conditions applied at 

z=0. 

z

r 

Fig. 3. Typical 2D FEM mesh of flywheel disk profile 

 

For the sake of analysis three geometry cases were analyzed. 

For case 1, the thickness of flywheel is modeled by a single 

cubic spline function which has zero and infinite slopes at r=0 

and r=ro respectively where ro is the outer radius of flywheel. 

The thickness of flywheel at r=zero equals w. The geometry of 

case 1 is shown in Figure 4. It has three key-points needed for 

ANSYS mesh generation. 

Case 2 has a profile with a single cubic spline function and four 

key-points as in Fig. 5. The cubic spline function has two 

slopes of zero values. 
 

zero slope infinite slope

w/2

One Cubic Spline

 

  

Keypoint ro  
Fig. 4. Case 1 of flywheel thickness profile 
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Fig. 5. Case 2 of flywheel thickness profile 
 

The thickness of flywheel at r=ro is denoted by t.  

Case 3 has similar number of key-points as those of case 2 but 

with an additional cubic spline. The thickness t is at 

intermediate distance r= r* that separates the two cubic splines. 

Case 3 has combined shapes as those of case 1 and 2 as 

demonstrated by Fig. 6.  

 

zero slope infinite slope

w/2 r*
t/2

Two Cubic Splines

 

  

 

Keypoint ro
 

Fig. 6. Case 3 of flywheel thickness profile 

2.2. Flywheel Energy   

 

The flywheel material has 205 GPa stiffness, 290 MPa yield 

stress, 0.29 Poisson's ratio and a density of 7872 kg/m3. The 

flywheel material is linear elastic.   

The stored kinetic energy of a flywheel,  KE,  is 

2

2

1
IKE                    (1) 

where I is the mass moment of inertia and  is the angular 

velocity. The kinetic energy per unit mass of a flywheel 

(energy storing capability of flywheel), KE/m is 

 




v

dv

I
mKE





2
/

2

                 (2) 

where v is volume,  is the density of flywheel material.  
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The mass of flywheel used is 10 kg for all cases. To achieve 

this, firstly a full 3D volume is generated from arbitrary sized 

2D profile of flywheel, secondly the volume is re-adjusted such 

that the total mass becomes 10 kg. The mass moment of inertia 

of this volume is thereafter calculated. Finally the original 2D 

profile is regenerated with the new scale. All the above steps 

are done by APDL language of ANSYS that is written through 

text file. Each case study has one text (batch) file that is 

recalled by ANSYS.   

3. Results and Discussion 

3.1. Accuracy   

To gain reliable numerical solution, the FEM results should be 

compared with associated analytical ones. To achieve this, a 

thin rotating disk of unit radius is considered. Hence, the plane 

stress condition is assumed. Both hoop () and radial stresses 

(rr) were investigated. The analytical stresses solutions of a 

rotating thin disk are [7] 

)
3

31
()

8

3
( 222 rro












  (3) 

        )()
8

3
( 222 rrorr 





                 (4) 

where  is Poisson's ratio. A typical comparison of radial 

stresses for analytical against FEM solution is illustrated via 

Figs. 7. 
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Fig. 7. Typical analytical solution and accuracy of radial stress 

distribution for a thin rotating disk 

 

Figure 7 shows that the maximum relative error is less than 1% 

and is located near r/ro = 0.9. The relative errors at r=zero is 

0.3%. This indicates that the FEM solution of flywheel stress is 

in very good agreements with associated analytical plane stress 

results.  

3.2. Results and Discussion 

 

This study is concerned with finding an optimal flywheel 

stored kinetic energy with the restriction of elastic deformation. 

Therefore, the maximum von Misses (effective) stress (e) 

should not exceed the yield stress (y) of flywheel material (i.e 

290 MPa). The examination of Eq. 3 and 4 shows that the 

maximum effective stress should be proportional to 2 such 

that  

 
2 ce                  (5) 

  

where c is constant that relies on the shape of flywheel and can 

be obtained from FEM analysis using a fixed magnitude of . 

This study uses  = 1000 rad/sec. The maximum permissible 

rotational speed, max , therefore, is  

 

e

MPa




290
1000max                  (6)  

   

Eq. 6 eliminates the need of defining a state variable while 

performing design optimization. By recalling Eq. 2 and  

adjusting mass of flywheel as 10 kg, the allowable KE/ma is 

therefore 

 

20
/

2
maxI

mKE a                  (7) 

 

Consequently the remaining task is reduced to become a 

maximization of KE/ma or minimization of 1/(KE/ma).  

The subsequent results are demonstrating the variation of 

KE/ma with flywheel profile parameters. Fig. 8 illustrates the 

optimization analysis of Case 1. Here, there is one parameter of 

optimization (i.e. w/ro). A thinner disk (with a lower w/ro) has a 

higher mass moment of inertia, I and vice versa. A higher mass 

moment of inertia, I, leads to a higher stresses therefore a lower 

permissible rotational speed,  max, should be employed. Eq. 1 

shows that capability of flywheel is proportional to both 

flywheel mass moment of inertia and rotational speed. 

Therefore intermediate magnitudes of I and  are anticipated to 

yield optimal conditions. This study indicates that there is an 

optimal shape of flywheel at w/ro =0.56. 
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Fig. 8 Optimization analysis of case 1 

 

A flywheel with Case 2 has two optimization parameters, 

namely, w/ro and t/w ratios. Fig. 9 shows the plot of the 

influence of t/w ratio at different w/ro magnitudes.  
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 Fig. 9 Optimization analysis of case 2, the role of thickness ratio, 

t/w 

 

For a given w/ro ratio, a larger t/w magnitude may lead to 

higher mass moment of inertia and therefore larger stresses 

which requires the reduction of rotational speed. On return, this 

will result in lowering KE/ma. A very small t/w ratio, on the 

other hand, results into smaller mass moment of inertia, I, and 

thus a smaller KE/ma. It is found that t/w of 0.12 has local 

optimal values of KE/ma the magnitude of which increases as 

w/ro decreases as in Fig. 10.  
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Fig. 10 Optimization analysis of case 2, the role of thickness 

ratio, w/ro 

 

As for case 1 a thinner disk has a higher mass moment of 

inertia, I, and a lower permissible rotational speed, max. An 

optimal KE/ma is obtained at w/ro= 0.1. This analysis indicates 

that a very thin disk is required in order to have the highest 

stored KE/ma. However, a very thin flywheel disk has a tiny 

robustness and very large tendency of buckling.  

A flywheel of Case 3 has three parameters of geometry 

profiles, t/w, w/ro and r*/ ro ratios.  The latter parameter (i.e. r*/ 

ro) divides the shape of flywheel into two cubic splines 

functions (Recall Fig. 6). For a given thickness ratio (w/ro 

=0.4), the permissible stored kinetic energy is considered in 

relation to t/w thickness ratio and the geometrical ratio r*/ ro as 

illustrated via Fig. 11.  

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

t/w

r*/r =0.5o

0.8

0.7

0.75

0.9

r*
t/2

ro

0.2 r
o

KE/m (kJ/kg)
a

 
Fig. 11 Optimization analysis of case 3, the role of thickness 

ratio, t/w and geometry parameter r*/ro (w/ ro =0.4) 

 

It is found that r*/ ro ratio has noticeable effect on the 

permissible stored energy.  A smaller and a larger r*/ ro ratios 

result in smaller permissible stored kinetic energy. Thus an 

intermediate r*/ ro ratio has an optimal KE/ma.  Similar 

observations are noticed for smaller w/ro magnitudes (i.e. w/ro 

=0.2 and w/ro =0.1) as illustrated via Fig. 12 and Fig. 13 

respectively. A flywheel with smaller thickness ratio, w/ro, has 

a higher optimal permissible stored energy.    

Figure 14 illustrates the maximum kinetic energy storing 

capability associated with thickness ratio w/ro. As for case 2, an 

optimal geometry has the smallest thickness, which leads to the 

same restrictions as those applied for case 2.    

Fig 15 illustrates the shapes and dimensions of optimized 

profiles of cases. Fig. 15 shows that the shapes of flywheel for 

both Case 2 and Case 3 are close to each other in terms of 

overall dimensions. When compared with other cases, Case 1 

has a thicker and shorter flywheel. Therefore, Case 2 and Case 

3 are anticipated to yield close results in terms of permissible 

stored energy, KE/ma.  
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Fig. 12 Optimization analysis of case 3, the role of thickness 

ratio, t/w and geometry parameter r*/ro (w/ ro =0.2) 
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Fig. 13 Optimization analysis of case 3, the role of thickness 

ratio, t/w and geometry parameter r*/ro (w/ ro =0.1) 
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Fig. 14 Optimization analysis of case 3, the role of thickness 

ratio w/ ro 
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Fig. 15 Optimized cases shapes 
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To investigate the stress state of each case under maximum 

permissible stored energy, Fig 16 is considered. It is found that 

for all cases the maximum effective stress is near r=0. The 

effective stresses are decreasing as r is increasing. Therefore 

the flywheel thickness at r =0 has to be maximum.  Case 3 has 

the maximum capability of kinetic energy storing at lower 

rotational flywheel speed. Case 2 has less capability with 

slightly higher rotational speed. Case 1 has the highest 

rotational speed and the lowest capability of kinetic energy 

storing.  

4. Conclusion 

 

Using FEM, this paper investigated near optimal shapes of 

flywheels for kinetic energy storing. Three flywheels thickness 

profiles were analyzed based on cubic splines functions. The 

study concluded that: (1) A more cases of flywheel disk 

thickness functions should be analyzed, (2) a thinner flywheel 

disk has a higher capability of kinetic energy storing, and (3) 

the corresponding maximum effective stresses are found near 

the centre of flywheels where thickness should maximum.  

Acknowledgments 
 

This optimization analysis is based ANSYS FEM. The author 

wishes to thank The College of Engineering at King Faisal 

University-KSA for all supports provided. 

References 

[1] Gerard C. Pardoen, Rod D. Nudenberg and Bruce E. 

Swartout, Achieving desirable stress states in thick rim 

rotating disks, International Journal of Mechanical 

Sciences 1981; 23/ 6; 367-382.  http.dx.doi.org/10.1016/0020-

7403(81)90066-7 

[2] Nadar D. Ebrahimi, Optimum design of flywheels, 

Computers and Structures 1988;29/ 4; 681-686.  
http.dx.doi.org/10.1016/0045-7949(88)90379-3 

[3] G.R. Kress, Shape optimization of a flywheel, Structural 

and Multidisciplinary Optimization 2000;19/1;74-81. 
http.dx.doi.org/10.1007/s001580050087 

[4] A.N. Eraslan, Y. Orcan, Elastic–plastic deformation of a 

rotating solid disk of exponentially varying thickness, 

Mechanics of Materials  2002; 34; 423–432. 
http.dx.doi.org/10.1016/S0167-6636(02)00117-5 

[5] Ahmet N. Eraslan, Elastic–plastic deformations of rotating 

variable thickness annular disks with free, pressurized and 

radially constrained boundary conditions, International 

Journal of Mechanical Sciences 2003;45; 643–667. 
http.dx.doi.org/10.1016/S0020-7403(03)00112-7 

[6] Mehmet Ali Arslan, Flywheel geometry design for 

improved energy storage using finite element analysis, 

Materials and Design 2008; 29; 514–518. 
http.dx.doi.org/10.1016/j.matdes.2007.01.020 

[7] Shigley JE: Mechanical engineering design. McGraw-Hill, 

1977. 

 
 

 

Max Von Misses stress

Case 1

Case 2

Case 3

KE/m (kJ/kg) = 22.9  3415 rad/sec
a max

KE/m (kJ/kg) = 31.5  2035 rad/sec
a max

KE/m (kJ/kg) = 33.2  2000 rad/sec
a max

r

z

z

r

z

r

 
 

Fig. 16 Capability and Stress State of Flywheel Optimized Cases 

http://dx.doi.org/10.1016/0020-7403(81)90066-7
http://dx.doi.org/10.1016/0020-7403(81)90066-7
http://dx.doi.org/10.1016/0045-7949(88)90379-3
http://dx.doi.org/10.1007/s001580050087
http://dx.doi.org/10.1016/S0167-6636(02)00117-5
http://dx.doi.org/10.1016/S0020-7403(03)00112-7
http://dx.doi.org/10.1016/j.matdes.2007.01.020



